Multijet production at the LHC: Event shapes, NNLO predictions and α_s

Javier Llorente

CIEMAT

June 29, 2023

- Introduction and historical perspective.
 - QCD and running coupling constant $\alpha_s(Q)$.
 - Jets and event shapes in e^+e^- .
 - Fixed order theoretical predictions.
 - Non-perturbative QCD: PDFs and fragmentation.
- The ATLAS detector and jet reconstruction.
 - The ATLAS tracking and calorimeter systems.
 - The Particle Flow algorithm and jet calibration.
 - The jet production cross section.
- ATLAS event shapes and theoretical predictions.
 - Event selection and phase-space definition.
 - Unfolding and systematic uncertainties.
 - Comparison to NNLO predictions.
- TEEC and determination of α_s .
 - Event selection and phase-space definition.
 - Unfolding and systematic uncertainties.
 - Comparison to NNLO predictions.
 - χ^2 fits, α_s and asymptotic freedom.
- Constraining new physics from $\alpha_s(Q)$.

QCD and the running coupling constant

- QCD is the theory of strong interactions between constituents of matter.
- Fermions Ψ_i are known as quarks. Bosons $G^a_{\mu}(x)$ are known as gluons.

QCD Lagrangian:
$$\mathcal{L}=-rac{1}{4}F^a_{\mu
u}F^{\mu
u}_a+\sum_{j,k}ar{\Psi}_j\left(i\gamma^\mu D_\mu-m
ight)_{jk}\Psi_k,$$
 where

• $D_{\mu} = \partial_{\mu} - ig_s G^a_{\mu}(x) \lambda_a$ covariant derivative \Rightarrow quark-gluon interactions.

•
$$F_{\mu\nu} = \frac{i}{g_s} [D_{\mu}, D_{\nu}]$$
 field strength tensor \Rightarrow gluon-gluon interactions.
• $\alpha_s = \frac{g_s^2}{4\pi}$ is the fundamental parameter of the theory.

Cross sections in QCD can be written as a perturbative expansion on α_s :

$$\frac{d^n\sigma}{d\xi_1\cdots d\xi_n} = \sum_{k=1}^{\infty} A_k(\xi_1,...,\xi_n) \left[\frac{\alpha_s(Q^2)}{\pi}\right]^k$$

See [G. P. Salam arXiv:1011.5131] for a nice review

QCD and the running coupling constant

• α_s depends on the interaction scale Q^2 through the RGE:

$$\frac{\partial \alpha_s}{\partial \log Q^2} = \beta(\alpha_s) = -\alpha_s^2(\beta_0 + \beta_1 \alpha_s + \beta_2 \alpha_s^2 + \mathcal{O}(\alpha_s^3))$$

The solution at three-loop precision reads

$$\frac{\alpha_s}{4\pi}(Q^2) = \frac{1}{\beta_0 x} \left[1 - \frac{\beta_1}{\beta_0^2} \frac{\log x}{x} + \frac{\beta_1^2}{\beta_0^4 x^2} \left(\log^2 x - \log x - 1 + \frac{\beta_2 \beta_0}{\beta_1^2} \right) \right]; \quad x = \log\left(\frac{Q^2}{\Lambda^2}\right)$$
Standard Model with n_f quark flavours:

$$\frac{\sqrt{q}}{\sqrt{q}} \frac{1}{\sqrt{q}} \frac{1}{\sqrt{$$

O [GeV]

Jets and the anti- k_t algorithm

- Jets are collimated sprays of hadrons from the hadronisation of partons.
- Aim to fully contain the shower from the parton cascade: $\vec{p_p} \sim \sum_h \vec{p_h}$.
- Jets can be reconstructed using iterative algorithms: k_t , anti- k_t , C/A, ...
- Algorithm seeded by jet constituents: partons, hadrons or detector objects.

anti- k_t algorithm [JHEP 04 (2008) 063]

$$\begin{aligned} d_{ij} &= \min\left(\frac{1}{k_{Ti}^2}, \frac{1}{k_{Tj}^2}\right) \frac{\Delta R_{ij}^2}{R^2} \\ d_{iB} &= \frac{1}{k_{Ti}^2} \end{aligned}$$

- Find min_j $\{d_{ij}, d_{iB}\}$ for constituent *i*.
 - If it's *d_{ij}*, combine constituents *i*, *j*.
 - If it's d_{iB}, call i a jet.
 - Iterate until no constituents left.

Global event structure: event shapes in e^+e^- annihilation.

- Experimentally, three-jet production is an ideal playground to measure α_s .
- Event shapes: Observables quantifying the isotropy of energy distribution.
- Historically, event shapes were developed for $e^+e^- \rightarrow q\bar{q}(g)$ annihilation.
- A classic example is Thrust [ALEPH Coll., Eur. Phys. J. C 35 457 (2004)].

$$T = \max_{|\vec{n}|=1} \frac{\sum_{i} |\vec{n} \cdot \vec{p}_{i}|}{\sum_{i} |\vec{p}_{i}|} \Rightarrow \begin{cases} T \to 1 : \text{Pencil-like event} \\ T \to \frac{2}{3} : \text{Isotropic event} \end{cases}$$

Fixed order theoretical predictions to three-jet production

- Back to the LHC, high-accuracy predictions needed to compare to data.
- The QCD cross section can be factorised [PDF \otimes Matrix element \otimes Frag.]

Parton distribution functions (PDFs)

- Probability $f_i(x, Q)$ of parton *i* carrying momentum fraction x at scale Q.
- Need to be obtained from fits to DIS (+pp @ LHC) data.
- Different sets available, depending on fitted datasets, parameterisation, ...

See [ATLAS Collaboration EPJC 82, 438 (2022)] and references therein

Parton shower Monte Carlo predictions

- Attempt to simulate all aspects of collisions.
- Matrix elements calculated at fixed order.
- Parton showers simulate all-order emissions.
- Simulates non-pert. hadron fragmentation.
 - Lund string hadronization \Rightarrow Pythia 8.
 - Cluster hadronization \Rightarrow Herwig 7.
- Underlying event from multiparton interactions
 - O Hard Interaction Resonance Decays MECs, Matching & Merging Weak Showers ESR
 - ISR*
 - QED

 - Multiparton Interactions

Generator	ME order	FS partons	PDF set	Parton shower	Scales $\mu_{\rm R}, \mu_{\rm F}$	$\alpha_{\rm s}(m_Z)$
Рутніа	LO	2	NNPDF 2.3 LO	$p_{\rm T}$ -ordered	$(m_{T3} \cdot m_{T4})^{\frac{1}{2}}$	0.140
Sherpa	LO	2,3	CT14 NNLO	CSS (dipole)	$H(s, t, u) [2 \rightarrow 2]$ CMW [2 \rightarrow 3]	0.118
MG5_aMC	LO	2,3,4	NNPDF 3.0 NLO	$p_{\rm T}$ -ordered	m_{T}	0.118
Herwig	NLO	2,3	MMHT2014 NLO	Angle-ordered Dipole	$\max_i \left\{ p_{\mathrm{T}i} \right\}_{i=1}^N$	0.120

Parton shower Monte Carlo predictions

- How well do Monte Carlo predictions work?
- MC models validated against a huge variety of data
- Non-pQCD effects (frag, UE) reasonably well described.
- Fragmentation: Measurement of $\zeta = p_T^{ch}/p_T^{jet}$ in jets.
- UE: Measurement of $\langle p_T \rangle$ in transverse regions.

10 / 51

Multijet production at the LHC

The ATLAS Tracking System

Innermost part of the ATLAS detector, containing three subdetectors.

- Four layers of Silicon pixel detectors (PIX).
- Four layers of Silicon microstrip detectors (SCT).
- A transition radiation tracker made of gaseous straws (TRT).
- High efficiency reconstruction of charged particles $(\pi^{\pm}, K^{\pm}, \mu^{\pm}, e^{\pm}, ...)$.
- Excellent momentum and spatial resolution for charged particle tracks.

The ATLAS Calorimeter system

- Contains two subsystems: Electromagnetic (ECAL) and Hadronic (HCAL)
- ECAL composed of Liquid Argon and electrodes $\Rightarrow e^{\pm}, \gamma$ reconstruction.
- Tile Hadronic calorimeter composed of steel and scintillator material.
- Hadronic endcaps (forward rapidity) composed of Liquid Argon.
- Energy deposits form clusters of cells using an iterative algorithm.

The Particle Flow algorithm and jet calibration

- Jets contain both neutral and charged hadrons $(\pi^0, \pi^{\pm}, ...)$.
- Tracking has much better spatial and $|\vec{p}|$ -resolution than calorimeter.
- Use track information when available, use calo info for neutrals (PFO).
- Jets are built from PFO inputs, then follow a calibration procedure.
- Uncertainty on jet p_T derived using in situ methods ranging $\mathcal{O}(1-5\%)$.

The jet production cross section [JHEP 05 (2018) 195]

- Jet production cross section falls steeply as a function of jet p_T and m_{jj} .
- NLO QCD, with NP and EW corrections, gives a reasonable description.
- Probes different p_T scales, from 100 GeV to 4 TeV, for various y bins.
- Comparison to NLO and NNLO predictions with different scale choices.

The jet production cross section [JHEP 05 (2018) 195]

- PDF uncertainties increase with jet p_T (high x!)
- Scale uncertainties on μ_R, μ_F dominant.
- Important dependence on $\mu = p_T^{\text{max}}$ vs. $\mu = p_T^{\text{jet}}$.
- Difference treated as an additional uncertainty.

Relative uncertainty 0.2 0.1

0.05

-0.05

- Event shapes characterise the isotropy of the energy distribution.
- Two main families are considered: Thrust-based and Sphericity-based.
- Transverse Thrust and Transverse Thrust Minor:

$$\tau_{\perp} = 1 - \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \cdot \hat{n}_{\mathrm{T}}|}{\sum_{i} |\vec{p}_{\mathrm{T},i}|}; \qquad T_{\mathrm{m}} = \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \times \hat{n}_{\mathrm{T}}|}{\sum_{i} |\vec{p}_{\mathrm{T},i}|}$$

• The 2 and 3-dimensional Sphericity tensors $\mathcal{M}_{\alpha\beta} = \frac{1}{\sum_{i} |\vec{p_i}|} \sum_{i} \frac{p_i^{\alpha} p_i^{\beta}}{|\vec{p_i}|}$, i.e.

$$\mathcal{M}_2 = \frac{1}{\sum_i |\vec{p_i}|} \sum_i \frac{1}{|\vec{p_i}|} \begin{pmatrix} \mathsf{p}_{\mathrm{x}i}^2 & \mathsf{p}_{\mathrm{x}i}\mathsf{p}_{\mathrm{y}i} \\ \mathsf{p}_{\mathrm{y}i}\mathsf{p}_{\mathrm{x}i} & \mathsf{p}_{\mathrm{y}i}^2 \end{pmatrix}$$

$$\mathcal{M}_{3} = rac{1}{\sum_{i} |ec{p}_{i}|} \sum_{i} rac{1}{|ec{p}_{i}|} \left(egin{matrix} p_{xi}^{2} & p_{xi} p_{yi} & p_{xi} p_{zi} \ p_{yi} p_{xi} & p_{yi}^{2} & p_{yi} p_{zi} \ p_{zi} p_{xi} p_{xi} & p_{zi} p_{yi} & p_{zi}^{2} \ \end{pmatrix}$$

Eigenvalues $\mu_i \in \sigma(\mathcal{M}_2)$ and $\lambda_i \in \sigma(\mathcal{M}_3)$

$$\mu_1 \ge \mu_2; \quad \lambda_1 \ge \lambda_2 \ge \lambda_3$$

- Transverse Sphericity $S_{\perp} = \frac{2\mu_2}{\mu_1 + \mu_2}$
- Aplanarity $A = \frac{3}{2}\lambda_3$
- $C = 3(\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3)$
- $\square D = 27\lambda_1\lambda_2\lambda_3$

- Jets are built with anti- k_t , R = 0.4 from Particle Flow objects.
- Jets with $p_T > 100$ GeV and $|\eta| < 2.4$ are preselected.
- Events with at least two jets with $H_{T2} = p_{T1} + p_{T2} > 1$ TeV.
- Three H_{T2} regions are considered $\mathcal{R} = \{1.0 \text{ TeV}, 1.5 \text{ TeV}, 2.0 \text{ TeV}, \sqrt{s}\}.$

- Event-shape distributions obtained at detector level versus H_{T2} and n_{jet} .
- Distributions to be corrected for detector effects (resolution, efficiency, ...)
- Need to take into account migrations between (H_{T2}, n_{jet}) bins.
- This is achieved by solving a linear problem in $\tau_{\perp} \otimes H_{T2} \otimes n_{\text{jet}}$ dimensions.

- Systematic uncertainties on jet energy (JES, JER) are dominant.
- Unfolding is performed with different Monte Carlo models.
- Jet Angular Resolution and Pileup are subdominant.
- Uncertainties range from $\mathcal{O}(1\%)$ to $\mathcal{O}(7\%)$ with increasing jet multiplicity.

- After unfolding, the multijet cross section is presented versus n_{jet} .
- Results compared to different MC models (Pythia, MG5, Herwig, Sherpa).
- A reasonable description is obtained up to exclusive three-jets bin.
- Important (expected) differences observed among MC models for $n_{jet} \ge 4$.

- For each bin, the distributions are normalised to two-jet cross section σ_2 .
- Large jet multiplicities implies more isotropic events.
- No MC model fully describes the data, either in shape or normalisation.
- As expected the description is worse for larger jet multiplicities.

- For each bin, the distributions are normalised to two-jet cross section σ_2 .
- Large jet multiplicities implies less planar events.
- No MC model fully describes the data, either in shape or normalisation.
- As expected the description is worse for larger jet multiplicities.

- Perturbative QCD can be used to calculate predictions to event shapes.
- Calculation needs to estimate integrated σ_2 and differential σ_3 separately.
- To ensure good cancellations, predictions calculated for inclusive 3-jet bins.

$$\left(\frac{d\sigma_3}{dH_{T2}dx}\right)_{n_j\geq 3} = \left(\frac{d\sigma_3}{dH_{T2}dx}\right)_{n_j=3} + \left(\frac{d\sigma_3}{dH_{T2}dx}\right)_{n_j=4} + \left(\frac{d\sigma_3}{dH_{T2}dx}\right)_{n_j=5} + \left(\frac{d\sigma_3}{dH_{T2}dx}\right)_{n_j\geq 6}$$

• Scale choice $\mu_R = \mu_F = \hat{H}_T = \sum_{\text{partons}} p_{Ti}$

- Different PDF parameterisations are used:
 - NNPDF 3.0 [JHEP 04 (2015) 040]
 - MMHT 2014 [EPJC 75, 204 (2015)]
 - CT18 [PRD 103, 014013 (2021)]
 - HERAPDF 2.0 [EPJC 75, 580 (2015)]
- Central predictions slightly overestimate dijet cross sections.
- Good agreement within experimental and theoretical uncertainties.

- Non-pQCD corrections cover jet fragmentation and UE effects.
- The effect of these corrections is limited to $\mathcal{O}(1\%)$ in all regions.
- They are estimated using different MC models and tunes as the ratio

$$C_{NP} = \left(\frac{1}{\sigma_2} \frac{d\sigma_3}{dX}\right)_{\rm UE=ON}^{\rm Had=ON} \middle/ \left(\frac{1}{\sigma_2} \frac{d\sigma_3}{dX}\right)_{\rm UE=OFF}^{\rm Had=OFF}; \quad X = \tau_{\perp}, T_m, A, \ldots$$

- Each additional perturbative order adds for a better description of τ_{\perp} .
- Scale uncertainties reduce with each additional perturbative order.
- **NNLO** predictions describe the data well, specially for high τ_{\perp} .
- Low values of τ_{\perp} can be subject to additional resummed corrections.

Javier Llorente

- Each additional perturbative order adds for a better description of A.
- Scale uncertainties reduce with each additional perturbative order.
- NNLO predictions describe the data well, specially for high A.
- Low values of A can be subject to additional resummed corrections.

Javier Llorente

Multijet production at the LHC

- The differences between PDF sets is studied for each observable.
- In general, a good compatibility is observed within PDF uncertainties.
- HERAPDF 2.0 shows the largest differences with respect to the others.

- α_s -dependence estimated using variations provided by each PDF group.
- Considering the Taylor expansion around $\alpha_{s,0} = 0.1180$:

Javier Llorente

Multijet production at the LHC

TEEC: The $x_{\rm T}$ -weighted distribution of differences in azimuth between jets *i* and *j*, with $x_{{\rm T}i} = \frac{E_{{\rm T}i}}{\sum_{\nu} E_{{\rm T}\nu}}$

$$\frac{1}{\sigma}\frac{d\Sigma}{d(\cos\phi)} = \frac{1}{\sigma}\sum_{ij}\int\frac{d\sigma}{dx_{\mathrm{T}i}dx_{\mathrm{T}j}d(\cos\phi)}x_{\mathrm{T}i}x_{\mathrm{T}j}dx_{\mathrm{T}i}dx_{\mathrm{T}j}$$

And the azimuthal asymmetry ATEEC is defined as

ATLAS Collaboration, [Phys. Lett. B 750,427 (2015)], [Eur. Phys. J. C 77, 872 (2017)]

- Small sensitivity to IR divergences and mild dependence on PDF and μ_R, μ_F .
- Good stability against JES and JER due to x_{Ti}x_{Tj}-weighting

- Jets are built with anti- k_t , R = 0.4 from Particle Flow objects.
- Jets with $p_T > 60$ GeV and $|\eta| < 2.4$ are preselected.
- Events with at least two jets with $H_{T2} = p_{T1} + p_{T2} > 1$ TeV.
- Ten H_{T2} regions are considered, from 1.0 up to 3.5 TeV.

- Unfolding separately in each H_{T2} bin for computational reasons.
- Migrations over H_{T2} have a negligible impact on the results.
- Transfer matrix is highly diagonal (excellent detector resolution).

- Systematic uncertainties on jet energy (JES, JER) are dominant.
- Unfolding is performed with different Monte Carlo models.
- Uncertainties of $\mathcal{O}(2\% 3\%)$ in central plateau, smaller for $\cos \phi \sim \pm 1$.
- Uncertainties on ATEEC are cancelled out to sub-percent level.

- Non-perturbative corrections obtained in different Pythia / Herwig tunes.
- Mostly unity, with some deviations observed in the collinear region.

$$C_{NP} = \left(\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi}\right)_{\rm UE=ON}^{\rm Had=ON} \middle/ \left(\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi}\right)_{\rm UE=OFF}^{\rm Had=OFF}$$

- Predictions avoid back-to-back and collinear regions $\Rightarrow |\cos \phi| < 0.92$.
- Theoretical uncertainties on the predictions are estimated on:
 - Renormalisation and factorisation scales μ_R , μ_F variations by a factor of 2.
 - Variations of the PDF parameters (eigenvectors / replicas).
 - Non-perturbative corrections with different MC tunes.
 - Variations of the strong coupling $\alpha_s(m_Z)$ by 0.0001.
- Total uncertainties of O(2%) (3%) for TEEC (ATEEC).

- Data are compared to theoretical predictions at LO, NLO and NNLO
- Intensive use of computing grid (over 100M CPU hours \sim 11K years!)
- Excellent description of collinear and back-to-back regions.
- Important reduction of theoretical uncertainties on QCD scales.

Good overall description, with theory slightly above the data for high H_{T2} bins.

ATLAS

Particle-level TEEC √s = 13 TeV: 139 fb⁻¹ anti-k, R = 0.4 $p_{_{T}} > 60 \text{ GeV}$ $|\eta| < 2.4$ $\mu_{_{\mathbf{R}}\,_{\mathbf{F}}} = \mathbf{\hat{H}}_{_{\mathbf{T}}}$ $\alpha_{s}(m_{z}) = 0.1180$ MMHT 2014 (NNLO) - Data -- LO NLO NNLO

Good overall description, for ATEEC in all H_{T2} bins.

ATLAS

Particle-level ATEEC $\sqrt{s} = 13 \text{ TeV}; 139 \text{ fb}^{-1}$ anti-k, R = 0.4

p_T > 60 GeV |η| < 2.4

 $\mu_{R,F} = R_T$ $\alpha_s(m_2) = 0.1180$ MMHT 2014 (NNLO) - Data - Data - LO - NLO - NLO

For determining $\alpha_s(m_Z)$, a χ^2 function is minimized in 149+1 dimensions

$$\chi^{2}(\alpha_{\mathrm{s}}, \vec{\lambda}) = \sum_{\mathrm{bins}} \frac{(x_{i} - F_{i}(\alpha_{\mathrm{s}}, \vec{\lambda}))^{2}}{\Delta x_{i}^{2} + \Delta \xi_{i}^{2}} + \sum_{k} \lambda_{k}^{2}$$
 $F_{i}(\alpha_{\mathrm{s}}, \vec{\lambda}) = \psi_{i}(\alpha_{\mathrm{s}}) \left(1 + \sum_{k} \lambda_{k} \sigma_{k}^{(i)}\right)$

- x_i is the value of the data distribution in bin *i*.
- Δx_i and $\Delta \xi_i$ are the statistical uncertainties for data and theory.
- $\psi_i(\alpha_s) = \sum_{k=0}^{3} p_k^{(i)} \alpha_s^k$ parameterises the *i*-th bin dependence on $\alpha_s(m_Z)$.
- $\sigma_k^{(i)}$ are the relative experimental uncertainties (149 sources).
- λ_k are nuisance parameters for each experimental uncertainty.
- Scale uncertainties treated using the offset method: $\psi_i(\alpha_s)$ is varied.

Global TEEC fit uses information across the ten exclusive H_{T2} bins together

PDF	$\alpha_s(m_Z)$ value	$\chi^2/N_{\rm dof}$
MMHT 2014	$0.1175 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0032}_{-0.0011} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0005 \text{ (mod.)}$	318/251
CT14	$0.1196 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0035}_{-0.0010} (\mu) \pm 0.0016 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0006 \text{ (mod.)}$	262 / 251
NNPDF 3.0	$0.1191 \pm 0.0001 \text{ (stat.)} \pm 0.0006 \text{ (sys.)}^{+0.0040}_{-0.0011} (\mu) \pm 0.0020 \text{ (PDF)} \pm 0.0003 \text{ (NP)} \pm 0.0007 \text{(mod.)}$	300/251

Global ATEEC fit uses information across the ten exclusive H_{T2} bins together

PDF	$\alpha_s(m_Z)$ value	$\chi^2/N_{\rm dof}$
MMHT 2014	$0.1185 \pm 0.0005 \text{ (stat.)} \pm 0.0008 \text{ (sys.)}^{+0.0022}_{-0.0002} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0004 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	110/117
CT14	$0.1200 \pm 0.0006 \text{ (stat.)} \pm 0.0009 \text{ (sys.)}^{+0.0027}_{-0.0001} (\mu) \pm 0.0016 \text{ (PDF)} \pm 0.0005 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	110/117
NNPDF 3.0	$0.1199 \pm 0.0006 \pm (\text{stat.})0.0009 (\text{sys.})^{+0.0027}_{-0.0002} (\mu) \pm 0.0017 (\text{PDF}) \pm 0.0005 (\text{NP}) \pm 0.0001 (\text{mod.})$	108 / 117

- Values of $\alpha_s(m_Z)$ obtained from fits to TEEC functions on each bin
- For higher values of H_{T2} , the central values seem to go lower.
- Good χ^2 values for all H_{T2} regions considered.

$\langle \hat{H}_{\mathrm{T}} \rangle$ [GeV]	$\alpha_{\rm s}(m_Z)$ value (MMHT 2014)	$\chi^2/N_{\rm dof}$
Inclusive	$0.1188 \pm 0.0002 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} \stackrel{+0.0030}{_{-0.0002}} (\mu) \pm 0.0010 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0008 \text{ (mod.)}$	16.0 / 27
1302	$0.1186 \pm 0.0003 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} ^{+0.0031}_{-0.0001} (\mu) \pm 0.0010 \text{ (PDF)} \pm 0.0003 \text{ (NP)} \pm 0.0007 \text{ (mod.)}$	16.4 / 27
1518	$0.1182 \pm 0.0003 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} ^{+0.0027}_{-0.0005} (\mu) \pm 0.0010 \text{ (PDF)} \pm 0.0003 \text{ (NP)} \pm 0.0008 \text{ (mod.)}$	15.1 / 27
1732	$0.1191 \pm 0.0003 \text{ (stat.)} \pm 0.0011 \text{ (syst.)} \begin{array}{c} +0.0030 \\ -0.0005 \text{ (}\mu\text{)} \pm 0.0011 \text{ (PDF)} \pm 0.0005 \text{ (NP)} \pm 0.0010 \text{ (mod.)} \end{array}$	19.8 / 27
1944	$0.1179 \pm 0.0003 \text{ (stat.)} \pm 0.0011 \text{ (syst.)} ^{+0.0030}_{-0.0005} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0005 \text{ (NP)} \pm 0.0009 \text{ (mod.)}$	21.3 / 27
2153	$0.1175 \pm 0.0004 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} \stackrel{+0.0029}{_{-0.0004}} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0003 \text{ (NP)} \pm 0.0009 \text{ (mod.)}$	32.9 / 27
2396	$0.1179 \pm 0.0003 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} \begin{array}{c} ^{+0.0029}_{-0.0005} (\mu) \pm 0.0012 \text{ (PDF)} \pm 0.0011 \text{ (NP)} \pm 0.0012 \text{ (mod.)} \end{array}$	27.5 / 27
2706	$0.1164 \pm 0.0004 \text{ (stat.) } \pm 0.0015 \text{ (syst.) } ^{+0.0030}_{-0.0005} (\mu) \pm 0.0013 \text{ (PDF) } \pm 0.0005 \text{ (NP) } \pm 0.0011 \text{ (mod.)}$	35.1 / 27
3042	$0.1162 \pm 0.0005 \text{ (stat.)} \pm 0.0017 \text{ (syst.)} \begin{array}{c} ^{+0.0031}_{-0.0005} (\mu) \pm 0.0013 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0015 \text{ (mod.)} \end{array}$	33.1 / 27
3476	$0.1141 \pm 0.0007 \text{ (stat.) } \pm 0.0017 \text{ (syst.) } ^{+0.0033}_{-0.0011} (\mu) \pm 0.0014 \text{ (PDF) } \pm 0.0002 \text{ (NP) } \pm 0.0020 \text{ (mod.)}$	15.1 / 13
4189	$0.1116 \pm 0.0011 \text{ (stat.) } \pm 0.0018 \text{ (syst.) } ^{+0.0030}_{-0.0009} (\mu) \pm 0.0015 \text{ (PDF) } \pm 0.0002 \text{ (NP) } \pm 0.0020 \text{ (mod.)}$	14.0 / 13

- Values of $\alpha_s(m_Z)$ obtained from fits to ATEEC functions on each bin
- For higher values of H_{T2} , the central values seem to go lower.
- Good χ^2 values for all H_{T2} regions considered.

$\langle \hat{H}_{\mathrm{T}} \rangle$ [GeV]	$\alpha_{\rm s}(m_Z)$ value (MMHT 2014)	$\chi^2/N_{\rm dof}$
Inclusive	$0.1194 \pm 0.0009 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} \stackrel{+0.0023}{_{-0.0000}} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0005 \text{ (NP)} \pm 0.0000 \text{ (mod.)}$	10.7 / 12
1302	$0.1195 \pm 0.0011 \text{ (stat.)} \pm 0.0006 \text{ (syst.)} \stackrel{+0.0024}{_{-0.0000}} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0006 \text{ (NP)} \pm 0.0000 \text{ (mod.)}$	10.6 / 12
1518	$0.1191 \pm 0.0011 \text{ (stat.)} \pm 0.0007 \text{ (syst.)} \stackrel{+0.0020}{_{-0.0001}} (\mu) \pm 0.0011 \text{ (PDF)} \pm 0.0004 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	7.2 / 12
1732	$0.1187 \pm 0.0015 \text{ (stat.) } \pm 0.0009 \text{ (syst.) } ^{+0.0026}_{-0.0003} (\mu) \pm 0.0012 \text{ (PDF) } \pm 0.0010 \text{ (NP) } \pm 0.0002 \text{ (mod.)}$	7.2 / 12
1944	$0.1178 \pm 0.0016 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} \stackrel{+0.0022}{_{-0.0001}} (\mu) \pm 0.0013 \text{ (PDF)} \pm 0.0007 \text{ (NP)} \pm 0.0000 \text{ (mod.)}$	11.2 / 12
2153	$0.1174 \pm 0.0017 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} \stackrel{+0.0022}{_{-0.0002}} (\mu) \pm 0.0013 \text{ (PDF)} \pm 0.0007 \text{ (NP)} \pm 0.0001 \text{ (mod.)}$	12.8 / 12
2396	$0.1187 \pm 0.0017 \text{ (stat.) } \pm 0.0010 \text{ (syst.) } ^{+0.0017}_{-0.0000} (\mu) \pm 0.0012 \text{ (PDF) } \pm 0.0007 \text{ (NP) } \pm 0.0004 \text{ (mod.)}$	11.7 / 12
2706	$0.1148 \pm 0.0026 \text{ (stat.)} \pm 0.0014 \text{ (syst.)} \begin{array}{c} +0.0024 \\ -0.0001 \end{array} (\mu) \pm 0.0015 \text{ (PDF)} \pm 0.0007 \text{ (NP)} \pm 0.0002 \text{ (mod.)} \end{array}$	18.3 / 12
3042	$0.1169 \pm 0.0031 \text{ (stat.)} \pm 0.0012 \text{ (syst.)} \stackrel{+0.0018}{_{-0.0000}} (\mu) \pm 0.0015 \text{ (PDF)} \pm 0.0014 \text{ (NP)} \pm 0.0009 \text{ (mod.)}$	13.0/12
3476	$0.1141 \pm 0.0052 \text{ (stat.)} \pm 0.0016 \text{ (syst.)} \begin{array}{c} +0.0025 \\ -0.0007 \end{array} (\mu) \pm 0.0018 \text{ (PDF)} \pm 0.0008 \text{ (NP)} \pm 0.0011 \text{ (mod.)} \end{array}$	4.9/6
4189	$0.1096 \pm 0.0085 \text{ (stat.)} \pm 0.0009 \text{ (syst.)} ^{+0.0013}_{-0.0000} (\mu) \pm 0.0009 \text{ (PDF)} \pm 0.0002 \text{ (NP)} \pm 0.0007 \text{ (mod.)}$	6.2/6

- The value of $\alpha_s(m_Z)$ is evolved to $\alpha_s(Q)$ for each H_{T2} bin using the RGE.
- The value $Q = \langle \hat{H}_T \rangle / 2$ is chosen for comparison with other analyses.
- $\langle \hat{H}_T \rangle$ is obtained for each H_{T2} bin using the NNLO predictions.

$$\frac{\alpha_{s}}{4\pi}(Q^{2}) = \frac{1}{\beta_{0}x} \left[1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\log x}{x} + \frac{\beta_{1}^{2}}{\beta_{0}^{4}x^{2}} \left(\log^{2} x - \log x - 1 + \frac{\beta_{2}\beta_{0}}{\beta_{1}^{2}} \right) \right]; \quad x = \log\left(\frac{Q^{2}}{\Lambda^{2}}\right)$$

$$\underbrace{\bigoplus_{i=1}^{9} 4000}_{3000} \left[\underbrace{NNLO \ pQCD}_{i=13 \ TeV} \\ 3000} \underbrace{\bigvee_{i=13 \ TeV}}_{i=13 \ TeV} \\ \underbrace{\bigoplus_{i=100}^{9} 4000}_{1500} \underbrace{\bigcup_{i=100}^{9} 1300}_{i=100 \ TeV} \\ \underbrace{\bigoplus_{i=1000}^{9} 1300}_{i=100 \ TeV} \\ \underbrace{\underbrace{\bigoplus_{i=1000}^{9} 1300}_{i=100 \ TeV} \\ \underbrace{\underbrace{\bigoplus_{i=1000}^{9} 1300}_{i=100 \ TeV} \\ \underbrace{\underbrace{\bigoplus_{i=1$$

- Improves theory uncertainties by a factor of 3 with respect to NLO.
- Good agreement with world average and previous measurements.
- Renormalisation Group Equation probed at the highest scales to date.
- Provides the highest precision points beyond the TeV scale to date.

- Improves theory uncertainties by a factor of 3 with respect to NLO.
- Good agreement with world average and previous measurements.
- Renormalisation Group Equation probed at the highest scales to date.
- Provides the highest precision points beyond the TeV scale to date.

- The dependence on the PDF is studied in detail for $\alpha_s(Q)$.
- A small dependence, although noticeable, is observed on the PDF set.

Using the QCD coupling to constrain new physics [NPB 936, 106 (2018)]

- Testing the running coupling is an important precision test of the SM.
- But also a way to study contributions from new physics beyond the SM!
- New coloured fermions would modify the structure of the β function.

Becciolini et al. [PRD 92, 079905 (2015)]; Llorente, Nachman [NPB 936, 106 (2018)]

48 / 51

Using the QCD coupling to constrain new physics [NPB 936, 106 (2018)]

- The TEEC and ATEEC are obtained over a range of m_X and T_X .
- The modifications on $\alpha_s(Q)$ translate into effects on the distributions.
- Modified (SM+X) distributions can be used to evaluate a *p*-value.

Javier Llorente Multijet production at the LHC

49 / 51

Using the QCD coupling to constrain new physics [NPB 936, 106 (2018)]

• A scan is performed over m_X and $n_{eff} = 2n_X T_X$.

Likelihood *L* is built using the covariance matrix *V*.

$$\log L(X,\theta) = -\frac{1}{2}(X-\theta)^T V^{-1}(X-\theta)$$

- Models with *p*-value below 0.05 are excluded.
- ATEEC has less statistical power than TEEC.

Summary and conclusions

- Event shapes are an interesting way to probe QCD at hadron colliders.
- Experimentally, three-jet event shapes are measured at $\mathcal{O}(1\%)$ precision.
- Recent theoretical progress allows for a more precise understanding;
 - Improved description of event shapes at the LHC
 - Reduced theoretical uncertainties on μ_R, μ_F .
- Experimentally, event shapes are measured with $\mathcal{O}(1\%)$ precision.
- This allows for precise determinations of $\alpha_s(m_Z)$ using TEEC.
- First comparisons of three-jet observables with NNLO predictions.
- Most precise determination of $\alpha_s(Q)$ over the TeV scale.
- This information can be used to set limits on new fermions beyond the SM.