

Small Modular Reactors: A Paradigm Shift in Nuclear Technology?

ESSRI: Energy for Sustainable Science at Research Infrastructures

Andreas Pautz, Head of Nuclear Energy and Safety Division, Paul Scherrer Institut (PSI) Madrid, 26 September 2024

Content

- Nuclear Power Utilization: Context
- From Large to Small Reactors
- Design and Safety Features of LWR-SMR
- Near-Term SMR and Microreactors

Global Development of Nuclear Generation Capacities

There are currently 415 plants in operation worldwide (+25 waiting for restart in Japan), 60 plants under construction in 17 countries, and 91 in advanced project planning in 15 countries. 189 have been decommissioned.

Quelle: https://www.nuklearforum.ch/de/nuclearplanetfr

PSI

World Primary Energy Generation by Source

Source: Energy Institute Statistical Review of World Energy (2023)

OurWorldInData.org/energy • CC BY

Developments in recent years

2022: Nuclear energy in EU Taxonomy

Japan - December 2022: Nuclear decleared as important part of government plan for **"Green Transformation**". Restart of shutdown NPPs and construction of new NPPs planned

INDUSTRIAL SMRs on launched Istrial Alliance for

Small Modular Reactors (SMRs).

European Industrial

~ 3000 European companies

Alliance on SMRs

22 March 2024

Brussels

PSI

July 2023 – EU NUCLEAR ALLIANCE Goal:

- Development of integrated nuclear industry.
- 150 GW nuclear in EU electricity mix by 2050

25 Countries: **USA**, Armenia, Bulgaria, **Canada**, Croatia, Czech Republic, Finland, **France**, Ghana, Hungary, Jamaica, **Japan**, South Korea, Moldavia, Mongolia, Marocco, Netherlands, Poland, Romania, Slovakia, Slovenia, Sweden, Ukraine, United Arab Emirates, **United Kingdom**.

Nuclear power officially labelled as 'strategic' for EU's decarbonisation

The Council of EU member states and the European Parliament agreed on Tuesday (6 February) to label nuclear power as a strategic technology for the EU's decarbonisation, following months of intense negotiations in Brussels over the Net-Zero Industry Act (NZIA).

Feb 2024

Baseload Electricity for AI-Data and Computing Centers

f 🗾 🖬 in

nts"

Three Mile Island to be restarted to power Microsoft data centers

By David Szondy September 22, 2024

The Three Mile Island nuclear power station (CC BY-SA 4.0) Constellation Energy

In a remarkable topical twofer, not only is Microsoft turning to nuclear power to run its data centers, it's commissioned the restarting of the infamous Three Mile Island station - the site of the worst commercial nuclear accident in US history.

The Four Generations of Nuclear Power Plants

New Developments in Reactor Design

New Builds of Generation-III Reactors

The vast majority of new Generation-III plants are b MW_{el}) light water reactor technology and implement the three major severe accidents:

- Massive use of both active and passive safety systems, saccidents
- Core Damage Frequency < 10⁻⁶/year (factor of 10-100)
- "Practical elimination" of accident sequences that radioactivity (<10⁻⁷/year), with up to one week grace is necessary
- As of today, **38 operating reactors qualify as Generation-III-reactors**, **51 Generation-III reactors** are under construction (thereof 24 in China alone)
- The average building time for the completed 38 reactors is 7.5 years, however some reactors have taken up to 16 years to complete (Finland, EPR), the fastest less than 4 years (38 -44 months, ABWR, Japan)

Safety Systems of Generation-III Reactors: EPR

From Generation-II to Generation-III: Evolution of Safety Technology

1970 Generation-II **2020** Generation-III

Internationally Operating Generation-III Power Plant Vendors

EPR (Framatome) in Olkiluoto (FI), 1600 MW

«Economic» Reactor Project: Construction Costs / Time: 4000-5000 \$/ kW installed, built in 5-7 years: LCOE: 60-100 \$/MWh

AP-1000 (Westinghouse) in Vogtle (USA), 2 x 1200 MW

VVER-1200 (Rosatom) in Tianwan (China), 2 x 1250 MW

APR-1400 (KEPCO) in Barakah (UAE), 4 x 1400 MW

Large NPPs - challenges

- Large, complex, inefficient construction sites
- High capital costs and longer amortization times (less attractive for private companies)

The Answer: Small Modular Light Water Reactors (LWR-SMR)?

- Power up to ~300 MWe
- Smaller / less monolithic units and therefore reduced CAPEX
- Modules are factory-built and factory-tested before installation on site
- Significant shorter construction times for individual modules (goal: 2 4 years)
- Higher flexibility to better integrate with renewables
- Transportable by truck, train, boat or plane
- Applications include heat to isolated sites not connected to the electric grid
- Compact design allows the possibility for underground construction
- Passive safety
- "Walk-away" safe and therefore significant reduction of emergency planning zone (EPZ), which is limited to plant site perimeter (no evacuation zone required:
 - NuScale licensed 500 meter perimeter, 1 km for GE-Hitachi BWRX-300)

Large LWR vs. LWR-SMR: Comparison in Size

Large LWR vs. LWR-SMR: Comparison in Size

126 NuScale Power Modules

NuScale's combined containment vessel and reactor system

SMRs already on the market or available by 2030

ACP 100,

(China)

in construction

NuSCALE (6 x 77 MW)

Licensed in USA

Gen-IV. Construction license submitted in 2024

Russia: 8 in operation (LWR), several planned (LWR/SFR)
China: 2 in operation (HTGR), 3 in construction (1 LWR), 2 SFR)
Canada: 4 ordered, Argentina: 1 in construction
USA: 1 in construction (Kairos), several planned

2xHTR-PM

in operation (China)

Kairos (US). Construction licensed received in March 2024 (Tennessee)

NUSCALE

UK SMR (Rolls Royce), 443 MW, from 2030

NUWARD (EdF/Technicatome) 170 MW, from 2030

STEAM LINE FEEDWATER LINE NuScale: The First Licenced SMR Design in the USA PSI reactor biological shield pool building refueling machine CONTAINMENT VESSEL water crane reactor building REACTOR VESSEL spent fuel pool SUPPORT TRUNNION Underground Ε STEAM GENERATOR 19,1 2 m N RISER З weir reactor vessel flange containment vessel NUCLEAR CORE tool NuScale Power flange tool Modules Factory Manufacturing Each Module is refueled underwater 4,5 m 4 while the remainder of the plant produces power Refueled once every 24 months ٠ Capable of 48-month fuel cycle ٠ 10 Day Refueling Target ٠

Passive Safety Systems: «Walk-Away Safety»

Decay Heat Removal after Reactor Shutdown (Long-Term Station Blackout Scenario)

Reactor Core remains Covered at all Times

Emergency planning zone (PEZ) limited to the site boundary (no evacuation required, even in case of severe accidents)

NUWARD (France)

General characteristics

- 2 reactors of 540 MWth
- 2 containment structures submerged in water
- 1 Nuclear Island semi-buried (25 m) protected against aircraft crash
- 2 generation units of 170 MWe

STRATEGIC SUPPORT FROM FRENCH GOV.

2020: EUR 50 M (French Recovery Plan) for Conceptual Design

2022: EUR 500 M ("France 2030" plan)

2026: Start of licensing procedure, first concrete by 2030

GE-Hitachi BWRX-300

Constructability and Design-to-cost

- Underground construction using proven methods from other industries
- Maximum use of catalogueitems
- "Off the shelf"turbine/generator

Canada has already ordered 4 units. Site preparation started. Expecting construction license by end of 2024 Capital cost at 700 Mio. \$, 2250 \$/kWh, O&M cost<16 \$/MWh, Claimed LCOE at ~40 \$/MWh

Rolls-Royce (UK)

* 2021 economics, fleet unit; £1:€1.1406 (5yr average), costs based on UK labour rates
 ** 2021 economics, 2 unit plant, range dependent on financing mechanism

AP300 (Westinghouse, US)

Gen IV / Sodium-cooled SMR

- Gen-IV-Reaktor (sodium-cooled) SMR
- With integrated storage (molten salt)

Construction license submitted in March 2024 (Wyoming)

TERRAPOWER – 345 MWe 1 GWh Energy Storage

The Generation-IV Reactor Concepts

Not only for electricity production

Pilot plant - Production of hydrogen from 1.25 MW of Nine Mile Point NPP (NY, USA)

A new race to space

SPACE TRANSPORTATION AND NUCLEAR PROPULSION

NASA Announces Artemis Concept Awards for Nuclear Power on Moon

Russia and China planning nuclear power plant on Moon by 2035

The joint project between the two countries could be a step towards establishing future lunar settlements.

March 6, 2024

Microreactors – up to ~ 10 MWe

PLAYERS (USA)

- MARVEL (INL, in construction)
- Westinghouse (INL, 2026)
- BWRT (INL, 2025)
- Kairos (ORNL, 2026; in constr.)
- X-Energy
- Ultra Safe Nucl. Corp.
- OKLO
- HOLOS (in licensing phase)

- □ Plug-and-Play connection (< 1 month)
- Reduced space needed (~15 m²), small site (< 2000 m²)
- □ Refueling once every 10 years
- □ No water needed for cooling (heat pipes)
- As part of grid, microgrid or independent from grid
- Build in factory, and transported on site with ISO container
- For desalination, hydrogen production, and other industries
- □ Offiste refueling every 10 years
- No on-site storage of radioactive material

Microreactors – cogeneration applications

Conclusion

- Small Modular Reactors (LWR) will approach commercialization in this decade
- Rated reactor power between 20 to 300 MW_{el} will be available, given the large number of experienced vendors
- Severe Accident with Core Melt are practically excluded by design
- SMR have the potential to beat large LWR in LCOE, but this needs to be proven
- Microreactors (power below 20 $\rm MW_{el}$) may likewise enter the market in the late 2020s

Small Modular Reactors: are they available today?

