

High Temperature Superconducting Magnets for Sustainability Upgrades of Accelerators

GSI: <u>T. Winkler</u>, C. Roux, K. Sugita, P. Spiller INFN, UniMi: S. Mariotto, S. Sorti L. Rossi INFN, Uni Rome: S. Busatto

- Beam line magnets are major power consumers for R&D centres
- Two examples for upgrades of normal conducting magnets from CNAO and GSI
 - Similarities:
 - Iron dominated magnet
 - Ramped operation
 - Similar power consumption (30 kW, 47 kW)
 - Differences:
 - H-Frame magnet vs Window frame magnet
 - Racetrack coil vs saddle coil
 - HTS vs. MgB₂

Example 1

HTS Upgrade of iron dominated beam steering magnet

FAIR GmbH | GSI GmbH

GSI Beam Steering Magnet

- 12.5° 13 Tm normal conducting magnet
- H-Frame yoke design
- 2x 100 turn water cooled copper coils

What do we want to do

- Multiple operation modes
 - DC to 0.5 Hz
- No cryogenic fluids => dry cooling
- Reuse exiting hardware as much as possible
 - Yoke
 - Power converter
 - Cabling
- Design concept
 - HTS racetrack coils
 - Install assembly of cryostat and coil in space of copper coils
- Challenge: Coil cooling during ramping

INFN

Parameter	Value		
Field in Gap	1.6 T		
Max Current	534 A		
Ramp rate	1 T/s		
DC Power	46 kW		

Magnetic field and AC loss

2D-Model in Comsol

dXw=hturn*(Nturns-1

- Parametric coil position
 - => Ic reserve and hysteresis loss
 - Verification with 3D model for two full cycle calculation shows good agreement

HTS Coi	Copper Coil	Units	
0,40	0,363	b3	
0,162	0,159	b5	
-0,00	-0,002	b7	
-0,002	-0,003	b9	

Design

- Exoskeleton cryostat, e.g. frame with walls plated on, nonconductive contact areas to limit eddy-currents in cryostat
- No thermal shield
- Fully encased double racetrack coils
- Option for one cryocooler on each extremity, SHI SRDK-500B
- 1 mm spacing between turns to reduce AC loss in conductor

Dynamic losses			
Stainless steel components	1.76 W 0.44 W	system/coil Peak power deposition during 1 T/s / 0.5 T/s ramp	
	0.19 W 0.048 W	system/coil Mean power deposition during cycle	
Thermobus	3657 W 914 W	coil Peak power deposition during 1 T/s / 0.5 T/s ramp	
	398 W 99 W	coil Mean power deposition during cycle	
HTS hysteresis loss	230 J/cycle	coil Peak power deposition during 1 T/s / 0.5 T/s ramp	
	25 W	coil Mean power deposition during cycle	

Static losses			
Support	3 W	system	
Current Leads	54 W	system	
Ohmic losses joints	20 W	system/coil	
Radiation (ambient)	6 W	system/coil	
Sensors	2 W	system/coil	

Example 2 MgB₂ Upgrade of an iron dominated magnet at CNAO

Work done by S. Mariotto, S. Busatto, S. Sorti, L. Rossi

Ramped magnet case study

Dipolar «Window-Frame» Bending Magnets installed at CNAO. Dimensions of the coil are **compatible** with minimum bending radius (100 mm) required for **MgB**₂

MAGNET PARAMETERS

Nominal Current	2280 A
Min Current	380 A
Nominal Field	1.74 T
Magnetic Lenght	5740 mm
Entrance Angle	30°C
Exit Angle	21°C
Field Homogenity	2 units
Maximum Power	700 kW

G. Bisoffi *et al.*, "Energy Comparison of Room Temperature and Superconducting Synchrotrons for Hadron Therapy", in *Proc. IPAC'22*, Bangkok, Thailand, Jun. 2022, pp. 3080-3083.doi:10.18429/JACoW-IPAC2022-THPOMS049

Main Challenges:

- 1. Field quality: \pm 2E-4 $\Delta B/B_0$ in 200x200 mm² aperture
- 2. Duty cycle depends strongly from patient treatment

30 kW DC 262 MWh/year

EM Design @ T=20 K

Target of the electromagnetic design optimization:

Magnetic field of 1.74 T at center

Two operating temperature considered:

- 10 K •
- 20 K (shown here) •

Use of a rope (3 MgB_2 conductors and 4 copper wires).

- 756 ropes carrying 226 A @ 1.93 T
- 14% margin LL 3.6 K temperature margin.

V 0

FAIR GmbH | GSI GmbH

AC Loss

Equivalent magnetization model used to evaluate average hysteretic losses in the conductor.

- Filament diameter equals to 55 μm
- 3D static heat map source
- Superconductor magnetization parallel to conductor has been neglected

Time averaged Losses	Hysteresis		
Design @ 10 K	37.2 [W]		
Design @ 20 K	34.2 [W]		

IFCC and ISCC: $f(\rho_{eff}, L_{Pitch})$

IFCC [W/m³]

Time averaged Losses	ISCC	IFCC
Design @ 10 K	2.02 [W]	0.22 [W]
Design @ 20 K	1.55 [W]	0.17 [W]

Mechanical Design

elc	MAGNET	Coils @	20 K	S	hield @ 60 K	
r	Q support	1.1 [W]			35 [W]	
	Q CL	0.	2 [W]		24 [W]	
	Q radiation	0.3	8 [W]		19.52 [W]	
		Hyst	15	SCC	IFCC	
	LOSSES	34.2 [W]	1.55 [[W]	0.17 [W]	TI :

- 5-mm-thick SS 316LN reinforcement bar around coils to limit deformations.
- A distributed set of 36 G10 cylindrical supports is adopted to sustain an active aluminium thermal shield (@ 60 K) and coils (@ 20 K).
- Aluminum **thermal shield** (6 mm thickness) working **@ 60 K** covered with **30 MLI** layers (minimization of radiation load).

Total magnet energy consumption: **4.3 kW** (vs 30 kW DC resistive).

 \approx 7 times lower

FAIR GmbH | GSI GmbH

Summary and Outlook

- Two examples for upgrade paths for existing ramped iron dominated magnets.
- Two very different solutions with similar properties
- HTS energy saving magnet at GSI:
 - Energy saving of up to 60% (DC) possible, strongly depends on the duty cycle and current
 - Possible procurement of prototype magnet planned
- MgB₂ beam steering magnet at CNAO:
 - Energy saving of up to 80% possible, again dependent on the duty cycle
- Main conclusion
 - Careful balance of duty cycle and magnet design needed, it is not a nobrainer
 - Superconductivity can reduce energy consumption but careful balancing with operation is necessary, DC operation vs. ramped operation

