

Work supported by INFN CSN5 experiment SAMARA and INFN CSN1 experiments SRF and RD_FCC

This project has received funding from the European Union's Horizon-INFRA-2023-TECH-01 under GA No 101131435 – iSAS and from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730 – I.FAST

Developments Towards Energy Efficient Superconducting RF Systems

7th Workshop Energy for Sustainable Science at Research Infrastructures. September 25th to 27th - Madrid, Spain

Save energy

Reduce resources consumption and waste production

Clean and green procedures

Nb₃Sn motivation

Energy saving is mandatory for the **next generation accelerators**

Cryogenics is one of the **larger energy cost** in modern SRF accelerators

Move from bulk Nb @2K to Nb₃Sn @4.5 K reduces cryogenic power by a factor of 3

Nb₃Sn state of the art

Vapor Tin Diffusion

Cornell, Fermilab, JLab, KEK

Technology limitation:

Reproducibility

S. Posen, SRF 2019 proceedings (elaborated)

Eacc

B_{nk} [mT]

Nb bulk 4.4 K (Q ~ 2 * 10⁸)

10

40

► **Nb as Substrate** (expensive, chemistry, no interlayer possible)

10¹¹

 $\sigma^{\circ} 10^{10}$

10⁹

0

Nb₃Sn 4.4/

Nb bulk 2 K

5

20

1.3 GHz

• 4.4 K

2.0 K

25

100

20

80

Nb₃Sn 2 K

15

60

A different approach: Nb₃Sn on Cu

Cu substrate as several advantages:

- Cheaper than Nb
- Higher thermal conductivity
- Higher mechanical stability
- Low carbon footprint
- PVD technology (Nb on Cu) already used for LEP, LHC, HIE-ISOLDE @ CERN ALPI @ INFN LNL

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Low melting point substrate
- Interface diffusion
- Coating Parameters
- Substrate preparation
- Target Production/Magnetron Design
- ► Trapped Flux
- ► Tuning

Nb₃Sn on Cu: Multiple challenges

- ► A15 are Brittle materials
- Complicated Phase Diagram
- Low melting point substrate
- Interface diffusion
- Coating Parameters
- SRF cavities R&D for FCC-ee

INFN Accelerators European Strategy Program

IFAST

- Substrate preparation
 Target Production/Magnetron Design
 - Trapped Flux

Tuning

Collaboration

C. Pira, O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V. Garcia, G. Keppel, G. Marconato, A. Salmaso, F. Stivanello (LNL) M. Bertucci, R. Paparella (LASA)

Science and Technology Facilities Council O.B. Malyshev, R. Valizadeh, C. Benjamin, T. Sian, L. Smith, D. Seal

C.Z. Antoine, S. Berry, Y. Kalboussi, T. Proslier

D. Longuevergne, O. Hryhorenko,

S. Keckert, O. Kugeler, J. Knobloch

UNIVERSITÄT X. Jiang, T. Staedler, A. Zubtsovskii

E. Seiler, R. Ries

(H)

ELÚ

A. Medvids, A. Mychko, P. Onufrievs

Lancaster 🚰 G. Burt, N. Leicester, S. Marks, D. Turner

<u>PICCOU</u>

R. Berton, D. Piccoli, F. Piccoli, G. Squizzato, F. Telatin

Associated Partners

Jefferson Lab A. M. Valente Feliciano

Informal Partners

Nb₃Sn on Cu R&D activity covers all cavity production chain

2 Technologies in focus

Surface Polishing PEP

Developments Towards Energy Efficient Superconducting RF Systems

cristian.pira@lnl.infn.it

Surface Polishing

L. Vega Cid, TTC meeting 2022 (elaborated)

Cu substrate plays a fundamental role in SRF performances

Roughness and defects reduction by **surface treatments are mandatory** for a good and uniform SRF coating

Cavity polishing requires large amount of acids. In particular Nb requires HF (extremely dangerous and poisoning process)

Plasma Electrolytic Polishing PEP Mechanism

Developments Towards Energy Efficient Superconducting RF Systems

cristian.pira@lnl.infn.it

Plasma Electrolytic Polishing PEP Results

1x 🗓 Nb 3x 🗒 Cu Solution Patents by INFN

Planar samples

150 μ m removed in ~ 5 h

EP

100

50 -

Additive Manufacturing

Ra= 13 μm

6.5 μm removed

PEP 30 min Ra= 1.5 μm

Cu Photocatodes

Ra ~ 8 nm!!!

QPR Samples Nb QPR polishing optimizaztion on-going HZB,

Full Cu QPR ready for coating

6 GHz Cu cavity

No internal cathode!

70 μm removed in 10 minutes 30 A (100 cm2 → 1.3 GHz ~ 300 A)

cristian.pira@lnl.infn.it

INFN

150 µm removed in ~ 40 min

입극의

at Research Infrastructures

DEŚY.

Scale up to 1.3 GHz cavity successfully done! (Aug 2024)

Explore alternative set-up to reduce Process Power

- Reduce Treated Area (rotating cavity)
- Optimizing Process Parameters (Temperature, Voltage, ...)

Next Steps:

- Test reproducibility
- Validate with **RF Test** (Nb coating @CERN) → February 2025

Nb₃Sn on Cu Coatings

Long R&D phase on PVD Parameter Optimization

Optimized Coating Recipe

- Coating Parameters:
 - Pressure = 2*10⁻² mbar
 - Power = 16 W
 - T substrate ≥ 600 C
- Nb Thick Barrier Layer > 30 um

A thick Nb buffer layer accommodates the Nb₃Sn coating

Nb substrate can be used to validate Nb₃Sn Coating Performances

First Nb₃Sn RF Results (on a small Nb planar resonator)

Rs of 23 nΩ @ 4.5 K, 20 mT **Quench >70 mT** @ 4.5 K

- Nb₃Sn coating suffer flux trapping
- Cooldown procedure influence Rs

Equivalent to a Q of 9.10^9 @5 MV/m @4.5 K 5 times better than LHC \rightarrow FCC-ee compatible Room for improvement

Developments Towards Energy Efficient Superconducting RF Systems

Surface Resistance (n
(0)

Nb₃Sn Path to Final Prototype

- ► 1.3 GHz Vacuum system ready
- Magnetron source commissioned

Nb₃Sn on bulk Nb to validate coating performances (2025) on 1.3 GHz Elliptical Cavities (2025)

Develop Nb thick barrier/accommodation layer on 1.3 GHz Elliptical Cavities (2025) (proof of concept on 6 GHz cavities already done)

Nb₃Sn on Cu with thick Nb coating **V** on 1.3 GHz Elliptical Cavities (2026-2028)

In parallel:

Study on alternative buffer layer

Study on flux trapping Science and Technology Science and Science and Technology Science

Conclusion

- PEP and Nb₃Sn films are possible game changer technologies for SRF accelerating cavities
- **Big steps forward** in the last two years with transition from planar to 3D samples
- Very promising results from first RF test
- Validation with 1.3 GHz cavities is necessary prior to evaluating the feasibility of implementing these technologies in real accelerators
- End of 2025 we expect to have the first tests available on 1.3 GHz cavities
- In 2028 optimized prototypes are expected

Work supported by INFN CSN5 experiment SAMARA and INFN CSN1 experiments SRF and RD_FCC This project has received funding from the European Union's Horizon-INFRA-2023-TECH-01 under GA No 101751435-35AS and from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730–1.FAST

