

And the lot of a set of the little of

Fakultät Maschinenwesen, Institut für Energietechnik, Schaufler–Professur für Kälte-, Kryo- und Kompressorentechnik

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature

Christoph Haberstroh

ESSRI Madrid, Sept. 26, 2024

History of (cryogenic) cooling

First Commercial Helium Liquefier

Ice harvest in winter / delivery / "cold box"

USA, NH₃ based costs (1922): \$714 car (Ford Model T): \$450 average salery: \$2000 / yr

Household fridge becoming widely available in Europe?

 \rightarrow after WW II !

Prof. Sam Collins, MIT/Boston \rightarrow ADL comp.

1946

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Theory of (Cryogenic) Cooling

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Second law of thermodynamics ("Carnot")

Refrigeration:

Minimum input power for
respective cooling power
$$P_{\rm min} = \dot{Q}_0 * \frac{T_U - T_0}{T_0}$$
T_U Ambient temp.T_0 Low temp.

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

page 4 DRE

first headache: Carnot Limit

beware! Extra losses at cold and hot heat exchanger

 $(\Delta T \approx 3 \dots 5 \text{ K}) \leftarrow$ unless e.g. bath cooling at low end temperature

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

first headache: Carnot Limit

Courtesy: Serge Claudet

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

page 6

DRESDE

concep

Lesson learned from "Carnot"

- ⇒ The colder, the more energy expensive
- ⇒ Do not operate at temperatures lower than necessary
- ⇒ Minimize the heat load at very low temperatures

<u>don't:</u>

full heat load at e.g. 4 K only

better:

thermal shields, intercepts
@ 80 K ⇔ by cheap LN₂
@ 20 K e.g.
minimum heat load at 4 K

trade-off: more complicated cooling plant / coldbox; CAPEX vs. OPEX

second headache: Carnot Fraction

second headache: Carnot Fraction

Courtesy: Guy Gisteau; Serge Claudet

The efficiency w.r.t Carnot does not depend on the temperature, but rather on the size

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Lesson learned from Strobridge:

- ⇒ A real cooling plant needs much more input power then a Carnot cycle (unavoidable)
- ⇒ The larger the cooling plant, the more efficient

better one large central cooling plant then several distributed small local plants

⇒ Avoid "multiple" safety factors

all cryogenic cooling plants suffer a poor part load efficiency

Why do we need such low temperatures after all?

a) condensation and liquefaction of gases

air separation; more easy transport and storage of N₂, O₂, H₂, Ar, natural gas –

⇒ no interest in low temperatures, uneasy additional complication

Bonus: high purity gases

b) reduction of thermal noise and excitation

- undisturbed measurements in solid state physics, nuclear physics
- noise-reduced amplifiers
- all superconductive application

thermal excitation: $E = k \cdot T$ 288 K: $k \cdot T = 25 \text{ meV}$ \leftarrow close to binding

page 11

4 K: k·T = 0.3 meV

energies in semiconductors etc.

Superconducting materials

Technical Superconductors: Operational Limits

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Cryogenic Fluids for Superconductor Cooling

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

page 14

DRESDE

concep

Cooling cycles with work extracting expansion

isentropic (work extracting) expansion:

 $\Delta S_{ideal} = 0$ (reversible)

m small: volumetric expander (e.g. piston)**m** large: turbines

Brayton Process

heat load

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

page 15

idealized:

isothermal compression and heat release

isobaric cool-down / warm-up

isentropic expansion

isothermal heat transfer

- + works always (ideal gas property)
- + much higher cooling effect
- mechanically demanding

real: isentropic efficiency **n**.

 $\eta_{s} = \frac{h_{2} - h_{3}}{h_{2} - h_{3}}$

Cooling cycles with work extracting expansion Expansion Turbines

axial + radial gas bearing; speed typ. 4500 s⁻¹

picture: Linde

recent optimization:

- geometry rotor / stator blades
- clearance losses
- material heat flow

isentropic efficiency 80th: $\eta_s \approx 65\%$ today: $\eta_s \approx 75 \dots 86\%$

⇒ increase in cooling power by 1.5 ... 2

Basic Cryogenic Cycles

volumentric compressors (oil lubricated screws); poor η future: turbo machinery?

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Helium Expansion in the T, s diagram

D-53

Cooling cycles with work extracting expansion

"High-end" Helium Plant

Conceptual design for DESY, TESLA:

8 cycle compressors in two stages

9 expansion turbines

3 cold compressors

heat loads at three temperatur levels

to be operated 24/7 cool-down / warm up: days...weeks shut-down once per year typically only

trade-off between
CAPEX – Capital Expenditure
and plant efficiency

Cryocooler as possible solution?

range, typically: "some Watt" @ 3 ... 100 K

- Stirling Cryocooler
- Gifford-McMahon Cooler
- Pulse Tube Cooler

well available convenient, closed system costs ~ 3000 45000 €

5.0 W @ 4.2 K + 65 W @ 45 K P_{in} = 27 kW

Cryomech

PT450

e.g.: 18 W @ 20 K + 110 W @ 80 K; P_{in} = 8 kW

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

Cryocooler as possible solution?

ca. 100 000 300 000 € + yearly service

alternative Helium Liquefaction: Cryocooler + Dewar

Chao WANG, www.cryomech.com HeRL15: > 15 l/day 1.5 W @ 4.2 K, P_{el} = 9.2 kW

ca. 14 kWh / I LHe

<u>compare</u>:

turbine liquefier 2 kWh / l _{LHe}

at least: can be switched on/off on a few hours basis

Cryogenic Refrigeration Efficiency Over a Large Range of Temperature Christoph Haberstroh, TU Dresden ESSRI Madrid, Sept 26, 2024

