Robust Cosmology with the Dark Energy Survey

Noah J. Weaverdyck

Chamberlain Postdoctoral Fellow Lawrence Berkeley National Laboratory Sept 7, 2023 - CIEMAT NWeaverdyck@lbl.gov

Outline

- Background: Cosmology
- Large-scale structure surveys and the Dark Energy Survey
- Treating spatial systematics
- Pushing beyond the standard model with FastISMoRE
- Conclusions

Credit: N. Jeffrey, DES Collab

NWeaverdyck@lbl.gov

Cosmology (The Big Picture)

- Dynamics and evolution of the universe at largest scales (~10+ Mpc; 30+ million light-years)
- General Relativity: Relate space-time ↔ matter/energy content
- Basic idea: Measure *history of expansion* and *history of structure growth* → constrain key cosmological parameters

"Standard Model" of cosmology

- 7 parameter " (ν) Λ CDM"
- Composition (right)

 + amplitude,
 spectral index,
 local expansion rate
 sum of neutrino masses
- Focus: "measure" these parameters

Measuring density fluctuations

- Galaxy *positions*: trace dark matter (DM) halos ("Galaxy clustering")
- Galaxy *shapes*: Images warped by intervening DM ("Weak lensing", "Cosmic shear")

Adapted from A. Stonebraker; American Physical Society

Weak Lensing Surveys: Now and Future

Inspired by E. Krause Credit: ESO, Fermilab/Reidar Hahn, NAOJ, ESA/C. Carreau, Rubin Obs/NSF/AURA, NASA

Dark Energy Survey (DES)

- 4-meter optical telescope in Chile
- 1/8 of sky between 2013 2019
- >300 million galaxies
- ~400 scientists
 - ~30 institutions
 - 7 countries

Probes of Structure Growth and Cosmic Evolution

"3x2pt" Uses 2-pt correlation functions

"3x2pt" Uses 2-pt correlation functions

• Cosmic Shear

"3x2pt"

Uses 2-pt correlation functions

- Cosmic Shear
- Galaxy Clustering

"3x2pt"

Uses 2-pt correlation functions

- Cosmic Shear
- Galaxy Clustering
- Galaxy-Galaxy Lensing

Gain further information by binning in redshift

("DNF" algorithm: J. De Vicente, E. Sánchez & I. Sevilla-Noarbe, 2016)

Galaxy Catalogs

- Galaxies drawn from "Gold" sample with photometric processing and corrections (I. Sevilla-Noarbe et al. 2020)
- ~10M "lens" galaxies:
 - MagLim (Porredon et al. 2021)
 - RedMagic (Rozo, Rykoff et al., 2016)
- ~100M shapes from "source" galaxies (Gatti & Sheldon, et al. 2021)

Distribution of galaxies in redshift bins

14

Data in practice

Gray: remove data where theory not good enough

Distribution of galaxies in redshift bins

34

Results: ACDM

- Most powerful 3x2pt constraints from a single galaxy survey
- 2x improvement in S/N over Year 1
- LSS competitive with CMB constraints \rightarrow but tension in S_8 ?

Dark Energy Results (wCDM)

- No evidence for $w \neq -1$ (ACDM, cosmological constant)
- Highly complementary to other probes!
- Tension remains (pushed into Ω_M)

LSST: Order of magnitude larger

- LSST, DESI, Roman, SPHEREx...
 Large areas, number densities
 → small statistical error
- Existing tensions \rightarrow definitive detections
- Need **exquisite** control of systematics to claim new physics

(some) LSS systematics

- Galaxy bias
- Small-scales (baryons, non-linearities...)
- Intrinsic alignment of galaxies
- Photometric redshift estimation errors

Angular systematics

• Modify *map*, leverage spatial info

Krause et al. (DES) 1706.09359

Spatial systematics

Observed galaxy field \neq truth

- Astrophysical (stellar contamination, dust, ...)
- *Observing conditions* (seeing, sky brightness, ...)
- *Instrumental* (flux calibration, source detection, ...)
- **Result**: density maps biased (and 2-pt functions, 3-pt, ...)

How to mitigate spatial systematics?

- Use *systematic templates* that trace potential contamination
 - Mask extremes
 - Estimate and correct for contamination via *weights*
 - Also *simulation-based* approaches
 e.g. Balrog (Everett+ 2021), Obiwan (Kong+ 2021)
- Many estimators
 - Can formulate methods as regression
 (Weaverdyck & Huterer 2007.14499)
 - Identify different implicit assumptions
 - Regression well-studied: enables refinements, improvements

 $\delta_{\rm obs} \approx \delta_{\rm true} + f_{\rm sys}(t)$ 22 Template map

Compare Methods on Simulations

New

Methods used:

- Mode (De)Projection (e.g. HSC, SDSS QSOs)
- Template Subtraction (e.g. BOSS LRGs)
- Multiple Linear Regression (e.g. KiDS LRGs, CFHTLenS)
- Iterative Systematics Decontamination (DES lenses)
- "E.Net"
- "Forward Selection"

Assess Map, Power Spectrum fidelity

Weaverdyck & Huterer 2007.14499)

Clear differences in methods!

• **DES-Y1 method** (or "ISD") and **ENet** methods perform best

→ Most robust to removing true LSS fluctuations

• Different assumptions (i.e. theory systematics)

DES-like simulations

Galaxy Clustering Power Spectrum Error

$$\Delta \chi^2_{\mathcal{C}_{\ell}} = \sum_{z \text{ bins}} \sum_{\ell=\ell_{\min}}^{350} \frac{\left(\tilde{C}^{\text{est}}_{\ell}(z) - \tilde{C}^{ss}_{\ell}(z)\right)^2}{\sigma^2_{C^{ss}_{\ell}(z)}},$$

(power spectrum \approx correlation function)

Methods

Performance of Different Methods

- EN shows comparable performance with ISD method across metrics $1 \text{ day} \rightarrow 5 \text{ sec}$
- Different "theory systematics"
- So who cares?

zbins $\ell = \ell_{\min}$

Weaverdyck & Huterer 2007.14499

ISD (DES Y1 and Y3)

- "Iterative Systematics Decontamination"
- Series of 1D, binned regressions on each template, iteratively reweight galaxies
- <u>Pros vs other methods</u>:
 - Covariance from mocks
 - Significance threshold to control overfitting
- <u>Cons vs OLS methods</u>:
 - Only detect marginal relationships
 - CPU and time intensive (~1 day)

(*Rodriquez-Monroy*, *Weaverdyck*+. 2105.13540, *Elvin-Poole*+ 2018, *Ross*+ 2011)

Elastic Net Weighting

- Regression extension: form of regularization (Zou & Hastie 2005)
- Incorporate template selection,
- Operate in full-D space (weak sensitivity to template basis)

In practice, select $\{\lambda_1, \lambda_2\}$ through cross-validation (trained on subsets of the data)

Elastic Net Weighting

Problems in DES Y3 Key Project Analysis

- Original fiducial lens sample ("Redmagic"): 3x2pt *inconsistent* under LCDM
- Many post-unblinding tests
- Prime suspect: unfixed galaxy clustering systematic
- **Problem**: $\sim O(1 \text{ day})$ for new weights

Rapid, complementary weights estimation

• Able to assess impact of mask, templates, contamination models

 \rightarrow Demonstrate robustness of weights

• Critical for identifying problematic cut in selection

 \rightarrow Motivate change in lens sample

• Marginalize over differences in decontamination models

Rodriguez-Monroy, NW et al. 2105.13540

1.8

redMaGiC, z-bin 1

Fig: Alex Amon

DES: Pixels to Cosmology (3x2pt)

N. Weaverdyck

Simplified picture

N. Weaverdyck

DES Y3: Testing Extended Models

- Validate inference architecture:
 - \rightarrow Simulate contaminated data vectors,
 - \rightarrow Verify inference **unbiased**
- Testing models beyond wCDM
 - w0wa, Ω_k , modified gravity, sterile neutrinos, etc.
 - **700+ chains!**

(Cosmo model) x (astro model) x (data combo)..

34

DES Y3: Testing Extended Models

Sum of neutrino masses under extended models

35

DES Y3 papers on galaxy clustering and weak lensing

- 1. "Blinding Multi-probe Cosmological Experiments" J. Muir, G. M. Bernstein, D. Huterer et al., arXiv: 1911.05929, MNRAS 494 (2020) 4454
- 2. "Photometric Data Set for Cosmology", I. Sevilla-Noarbe, K. Bechtol, M. Carrasco Kind et al., arXiv:2011.03407, ApJS 254 (2021) 24
- 3. "Weak Lensing Shape Catalogue", M. Gatti, E. Sheldon, A. Amon et al., arXiv:2011.03408, MNRAS 504 (2021) 4312
- 4. "Point Spread Function Modelling", M. Jarvis, G. M. Bernstein, A. Amon et al., arXiv:2011.03409, MNRAS 501 (2021) 1282
- 5. "Measuring the Survey Transfer Function with Balrog", S. Everett, B. Yanny, N. Kuropatkin et al., arXiv:2012.12825
- 6. "Deep Field Optical + Near-Infrared Images and Catalogue", W. Hartley, A. Choi, A. Amon et al., arXiv:2012.12824
- 7. "Blending Shear and Redshift Biases in Image Simulations", N. MacCrann, M. R. Becker, J. McCullough et al., arXiv:2012.08567
- 8. "Redshift Calibration of the Weak Lensing Source Galaxies", J. Myles, A. Alarcon, A. Amon et al., arXiv:2012.08566
- 9. "Redshift Calibration of the MagLim Lens Sample using Self-Organizing Maps and Clustering Redshifts", G. Giannini et al., in prep.
- 10. "Clustering Redshifts Calibration of the Weak Lensing Source Redshift Distributions with redMaGiC and BOSS/eBOSS", M. Gatti, G. Giannini, et al., arXiv:2012.08569
- 11. "Calibration of Lens Sample Redshift Distributions using Clustering Redshifts with BOSS/eBOSS", R. Cawthon et al. arXiv:2012.12826
- 12. "Phenotypic Redshifts with SOMs: a Novel Method to Characterize Redshift Distributions of Source Galaxies for Weak Lensing Analysis" R. Buchs, C.Davis, D. Gruen et al. arXiv:1901.05005, MNRAS 489 (2019) 820
- 13. "Marginalising over Redshift Distribution Uncertainty in Weak Lensing Experiments", J. Cordero, I. Harrison et al., arXiv:2109.09636
- 14. "Exploiting Small-Scale Information using Lensing Ratios", C. Sánchez, J. Prat et al., arXiv:2105.13542
- 15. "Cosmology from Combined Galaxy Clustering and Lensing Validation on Cosmological Simulations", J. de Rose et al., arXiv:2105.13547.
- 16. "Robust sampling of cosmological posterior distributions", P. Lemos, N. Weaverdyck, R. Rollins, J. Muir, A. Ferté, A. Liddle et al., in prep.
- 17. "Assessing Tension Metrics with DES and Planck Data", P. Lemos, M. Raveri, A. Campos et al., arXiv:2012.09554
- 18. "Dark Energy Survey Internal Consistency Tests of the Joint Cosmological Probe Analysis with Posterior Predictive Distributions", C. Doux, E. Baxter, P. Lemos et al. arXiv:2011.03410, MNRAS 503 (2021) 2688
- 19. "Covariance Modelling and its Impact on Parameter Estimation and Quality of Fit", O. Friedrich, F. Andrade-Oliveira, H. Camacho et al., arXiv:2012.08568
- 20. "Multi-Probe Modeling Strategy and Validation", E. Krause et al., arXiv:2105.13548
- 21. "Curved-Sky Weak Lensing Map Reconstruction", N. Jeffrey, M. Gatti, C. Chang et al., arXiv:2105.13539
- 22. "Galaxy Clustering and Systematics Treatment for Lens Galaxy Samples", M.Rodríguez-Monroy, N. Weaverdyck, J. Elvin-Poole, M. Crocce et al., arXiv:2105.13540
- 23. "Optimizing the Lens Sample in Combined Galaxy Clustering and Galaxy-Galaxy Lensing Analysis", A. Porredon, M. Crocce et al., arXiv:2011.03411 PhRvD 103 (2021) 043503
- 24. "High-Precision Measurement and Modeling of Galaxy-Galaxy Lensing", J. Prat, J. Blazek, C. Sánchez et al., arXiv:2105.13541
- 25. "Constraints on Cosmological Parameters and Galaxy Bias Models from Galaxy Clustering and Galaxy-Galaxy Lensing using the redMaGiC Sample", S. Pandey et al., arXiv:2105.13545
- 26. "Cosmological Constraints from Galaxy Clustering and Galaxy-Galaxy Lensing using the Maglim Lens Sample" A. Porredon, M. Crocce et al., arXiv:2105.1354
- 27. "Cosmology from Cosmic Shear and Robustness to Data Calibration", A. Amon, D. Gruen, M. A. Troxel et al., arXiv:2105.13543
- 28. "Cosmology from Cosmic Shear and Robustness to Modeling Assumptions", L. Secco, S. Samuroff et al., arXiv:2105.13544
- 29. "Magnification modeling and impact on cosmological constraints from galaxy clustering and galaxy-galaxy lensing", J. Elvin-Poole, N. MacCrann et al., in prep.
- 30. "Cosmological Constraints from Galaxy Clustering and Weak Lensing" The DES Collaboration, arXiv2105.13549
Conclusions

- "Golden era" of Observational Cosmology
 - Increasingly systematics limited
- DES is state-of-the-art survey with leading constraints on cosmological parameters
 - Novel systematics treatments crucial
 - Y6 Legacy Science analysis even better!
 → Talk to D. Sanchez Cid, J. Mena, S. Avila, ...
- Spatial systematics remain key systematic
- Systematics or new physics? Accelerated, integrated systematics testing crucial for harnessing precision of Stage IV surveys

NWeaverdyck@lbl.gov

37

Bonus Slides

Can assess robustness of Model Comparison stats

Grey: expected scatter around baseline

DES Colab, 2207.05766

S_8 Tension

- $S_8 \equiv \sigma_8 \sqrt{\Omega_{\rm m}/0.3}$
- + $\sigma_{\!8}$: Amplitude of linear power spectrum on the scale of 8 Mpc/h
- $\boldsymbol{\Omega}_m$: Energy dense of matter (incl. dark matter)

Most **large scale structure** probes prefer smaller S_8 compared to **CMB**, if we assume Λ CDM.

Slide from H. Miyatake

arge Scale Structure

C

3

DES Y3

- Two lens samples: redMaGiC and MagLim
- Apply both ISD and ENET weight methods
 - Good agreement
- Analytically marginalize over:
 - Difference in method predictions
 - Over-correction bias
- Rapid assessment of mask, template, method choices (~2 min vs 1 day)

Rodriquez-Monroy, NW+. 2105.13540

DES Collab, 2105.13549

DES Y3

- Two lens samples: RedMaGiC, Maglim Strong excess clustering in RedMaGiC
- Fiducial sample changed to MagLim, (though cosmology results consistent for 3x2pt)
- Parameterize via *Xlens*

 $X_{\text{lens}}^i = b_{\gamma_t(\theta)}^i / b_{w(\theta)}^i$

- Consistent with, without *Xlens* but much better goodness-of-fit
- Orthogonal to LCDM cosmo parameters (but not wCDM)

DES Y3

- Data inconsistency robust to wide variation of weights methodology, systematic templates
- Later: can mitigate by loosening RedMaGiC χ^2 selection criterion (Pandey+ 2105.13545)
 - Likely problem with *sky background estimation*

Useful Things to Know

- Identified strong *basis*-dependence of fiducial weights method
 - Also for BOSS weights, which used similar approach
- Can *induce* X_{lens} < 1 if f_{sys}(t) (i.e. weights) correlates with LSS (NW+, in prep)

Going Forward

- Multiple ways to get Xlens ≠ 1 clustering high, GGL low, or both
- Motivate and test mask, templates, contamination model (rapid weights estimator useful)
- Test for LSS in weights
 - Avoid highly-correlated data-derived templates
- Quantify and report 2pt *overcorrection*
- **Report measure of** *uncertainty* **on weights** (e.g. alternative reasonable sets)
 - Particularly important for beyond-2pt stats

Especially critical for f_{nl} analyses!

LSST + SO

LSST + SO

LSST Y1 + SO Y1	σ_{p_i} for Fiducial $w_0 - w_a \text{CDM}$									σ_{p_i} for MG		
	Ω_m	σ_8	n_s	w ₀	w _a	Ω_b	h	<i>s</i> ₈ *	w_p^*	μ_0	Σ_0	$\mu_0 + 4\Sigma_0$
6×2pt	0.019	0.018	0.036	0.21	0.65	0.0040	0.054	0.0059	0.069	0.40	0.080	0.23
LSST-only 3×2pt	0.020	0.020	0.039	0.22	0.76	0.0040	0.059	0.0076	0.098	0.43	0.079	0.41
6×2pt "lens=source"	0.019	0.017	0.035	0.19	0.61	0.0038	0.054	0.0054	0.056	-	-	-
LSST Y6 + SO Y5	Ω_m	σ_8	n _s	<i>w</i> ₀	Wa	Ω_b	h	<i>s</i> ₈	w _p	μ_0	Σ_0	$\mu_0 + 4\Sigma_0$
6×2pt	0.014	0.012	0.029	0.14	0.40	0.0037	0.043	0.0040	0.036	0.32	0.064	0.16
LSST-only 3×2pt	0.015	0.014	0.033	0.15	0.50	0.0038	0.050	0.0044	0.062	0.35	0.070	0.31
6×2pt "lens=source"	0.013	0.011	0.024	0.12	0.36	0.0037	0.039	0.0036	0.031	-		-

Posterior 1D σ of cosmological parameters

*Define $s_8 = \sigma_8(\Omega_m/0.3)^{0.35}$, $w_p = w(1/(1+z_p))$ at $z_p = 0.5$.

Feng+ 2108.00658

Galaxy Bias inferred via DES x CMB

Chang et al. 2203.12440

Ensure negligible impact ($<0.3\sigma$ shift) of:

Unmodeled systematics (synthetic data vectors):

- Nonlinear bias + baryons (OWLS, high AGN feedback)
- Nonlinear P(k) prescription: Halofit \rightarrow Euclid Emulator
- **3o Magnification** offset

Alternative inference **models** (tested on synthetic and blinded real data):

- Intrinsic alignment: NLA (2 params) \rightarrow TATT (5 params)
- Vary Xlens parameter ($X_{\text{lens}}^i = b_{\gamma_t(\theta)}^i / b_{w(\theta)}^i$
- Change n(z) nuisance parameterization (shift/stretch → Hyperrank [Cordero et al., 2109.09636])

Model Comparison

• Bayes factor
$$R = rac{Z_0}{Z_X} = rac{P(d|M_0)}{P(d|M_X)}$$

• Suspiciousness (Handley and Lemos 1902.04029) removes much of prior dependence, can compute *p*-value

$$\ln S = \ln R - \ln I$$
Contains prior information
$$\ln I \equiv \mathcal{D}_X - \mathcal{D}_0$$

• Also $\Delta \chi^2$, DIC, AIC

Do systematics map to a preference for extended models?

N. Weaverdyck

Systematic Impact on Model Comparison Statistics

Change in Suspiciousness model comparison stat if systematic in data:

$$\Delta \ln S_{X0} = \ln S_{X0}^{A} - \ln S_{X0}^{B} = \ln S_{AB}^{X} - \ln S_{AB}^{0}$$

N. Weaverdyck

NW & Otávio Alves et al., in prep

Suspiciousness: Robust to Systematics

Grey: expected scatter around baseline

DES Colab, 2207.05766

DES 3x2pt 3x2pt+BAO+RSD+SN+Planck Model Comparisons [wCDM] vs. $[\Lambda CDM]$ $[w_0-w_a]$ vs. $[\Lambda \text{CDM}]$ $[w_0-w_a]$ vs. [wCDM] $[\Omega_k]$ vs. $[\Lambda \text{CDM}]$ $[N_{\rm eff}]$ vs. $[\Lambda {\rm CDM}]$ $[N_{\text{eff}} - m_{\text{eff}}, \Delta N_{\text{eff}} > 0.047]$ vs. $[\Lambda \text{CDM}, \text{fix } m_{\nu}]$ - $[N_{\text{eff}}-m_{\text{eff}}, m_{\text{th}} < 10 \text{ eV}] \text{ vs. } [\Lambda \text{CDM}, \text{ fix } m_{\nu}]$ $[\Sigma_0 - \mu_0]$ vs. $[\Lambda \text{CDM}]$ [Binned $\sigma_8(z)$] vs. [ACDM] [Binned $\sigma_8(z)$, hyp] vs. [Λ CDM, hyp] [Λ CDM] vs. [Λ CDM, fix m_{ν}] [Λ CDM, lin. P(k)+cuts] vs. [Λ CDM, fix m_{ν}] [TATT IA model] vs. $[\Lambda CDM]$ $[X_{\text{Lens}}]$ vs. $[\Lambda \text{CDM}]$ $[A_{\rm L}]$ vs. $[\Lambda {\rm CDM}]$ $[A_{\rm L}, \text{ fix } m_{\nu}]$ vs. $[\Lambda \text{CDM}, \text{ fix } m_{\nu}]$ $[A_{\rm L}]$ vs. $[A_{\rm L}, \text{fix } m_{\nu}]$ 1.0 -10 -5 0 5 -5.0 0.0 5.0 10.0 -2.3 0.0 2.3 0.11.0 0.01 0.1 -10 10 -10 0 10 0.01 0 $\ln R$ $\ln S$ ΔAIC ΔDIC

 $\Delta \chi^2 / \Delta k$

Model Comparison Statistics

 $p(S, d_{\rm BMD})$

 $p(S, \Delta k)$

DES Colab, 2207.05766

55

DES Y3

- Two lens samples: redMaGiC and MagLim
- Apply both ISD and ENET weight methods
 - Good agreement
- Analytically marginalize over:
 - Difference in method predictions
 - Over-correction bias
- Rapid assessment of mask, template, method choices (~2 min vs 1 day)

Rodriquez-Monroy, NW+. 2105.13540

Simulation Pipeline

- DES-Y6 like
- 5 z-bins
- Results not strongly sensitive to survey specs

Templates:

- Gaussian realizations $C_{\ell} \propto (\ell + 1)^{-p} \quad p \in \{0, 1, 2\}$
- Static (Dust, scanning strategy, etc)

Note: Methods applicable to any contaminated signal with templates. Here galaxy clustering, with signal = galaxy overdensity. Generically: $\delta_{true} \rightarrow s$, $\delta_{obs} \rightarrow d_{obs}$

Template map

$$\delta_{\rm obs} \approx \delta_{\rm true} + \alpha t$$

Mode (De)Projection

$$\begin{split} \hat{\delta} &= \boldsymbol{F} \delta_{\rm obs} \\ &= \left[\lim_{\beta \to \infty} \left(I + \beta t t^{\dagger} \right)^{-1} \right] \delta_{\rm obs} \\ &= \left[I - t (t^{\dagger} t)^{-1} t^{\dagger} \right] \delta_{\rm obs} \\ &\quad \hat{\delta} &= \delta_{\rm obs} - t \hat{\alpha} \\ \end{split}$$

MP estimate of contamination coefficient α Is MLE, assuming:

$$\delta \sim \mathcal{N}(0, \sigma^2 I)$$

i.e.
$$\hat{\alpha} = \operatorname{argmin}_{\alpha} ||\delta_{obs} - T\alpha||^2$$

Multiple systematic templates: $t \to T \mid (N_{pix} \times N_{tpl})$ $\begin{array}{c|c} y = X\beta + \epsilon \\ \hat{\beta} = (X^{\dagger}X)^{-1}X^{\dagger}y \end{array} \begin{array}{c} \text{OLS to predict y} \\ \text{from X} \end{array}$ $y = X(X^{\dagger}X)^{-1}X^{\dagger}y + \hat{\epsilon}$ $\delta_{\rm obs} = T [T^{\dagger}T]^{-1} T^{\dagger} \delta_{\rm obs} + \hat{\delta}$ $\hat{\alpha}$ Actually care about residuals and their clustering

Multiplicative Correction

$$1 + \delta_{\rm obs} = (1 + \delta_{\rm true})(1 + f_{\rm sys})\gamma$$

 $\delta_{\rm obs} \approx \delta_{\rm true} + f_{\rm sys} + \delta_{\rm true} f_{\rm sys}$

- Additive estimates (MP, EN, OLS...) leave residual scatter in map
 - Contaminant to small-scale power
- Fix via multiplicative correction

$$\hat{\delta} = \underbrace{\frac{\delta_{\rm obs} - \hat{f}_{\rm sys}}{1 + \hat{f}_{\rm sys}}}_{$$

Model spatial systematics

• Spatially dependent screen (f_{sys}) modulates galaxy density

• Result: density maps biased! (and 2-pt functions, 3-pt, ...)

"Theory" uncertainty in weights methodology

- Additive vs multiplicative treatment
 - Most systematics *multiplicative* (exception: stellar contamination)
 - Additive correction methods neglect *multiplicative* term (e.g. Mode Deprojection)
 - BUT! Multiplicative correction "for free"

$$1 + \delta_{\rm obs} = (1 + \delta_{\rm true})(1 + f_{\rm sys})\gamma$$
$$\delta_{\rm obs} \approx \delta_{\rm true} + f_{\rm sys} + \delta_{\rm true}f_{\rm sys}$$

NW & Huterer 2007.14499

Systematic Template

"Theory" uncertainty in weights methodology

- What model for f_{sys} ? Which systematics templates?
 - Defines contamination degrees of freedom
 E.g. linear, quadratic, or ML-built models (NNs, RFs etc)
 - E.g. with BOSS data, Use ~10 (Ross+ 2012) or ~2000? (Leistedt & Peiris 2015)
 - More templates \rightarrow more *statistical nulling of LSS* modes \rightarrow galaxy power suppressed
 - Can "harden" methods to overcorrection, different scaling with N_{tpl}

Importance of Multiplicative Correction

MP Assumptions on Noise

• True clustering signal = regression "noise"

Only optimal if clustering signal

- 1) Gaussian
- 2) Diagonal
- 3) Flat

Can estimate α in pixel space or harmonic space $\hat{\alpha} = [T^{\dagger}T]^{-1}T^{\dagger}\delta_{obs}$

Diagonalize and optimally				
weight in harmonic space				

$$\hat{\alpha} = \frac{\sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \tilde{C_{\ell}}^{td} / C_{\ell}^{ss}}{\sum_{\ell=0}^{\ell_{\max}} (2\ell+1) \tilde{C_{\ell}}^{tt} / C_{\ell}^{ss}},$$

Pixel Space Harmonic Space $[\delta_{obs}]_{\ell m}$ Data $\delta_{obs}(\hat{n}_i)$ Dims of T $N_{pix} \times N_{tpl}$ (real) $N_{\ell m} \times N_{t p l}$ (complex) **Regression Noise (additive)** $\delta(\hat{n}_i)$ $\delta_{\ell m}$ Gaussian Approx. (~lognormal) Yes Diagonal No Yes Flat Yes No

 $(d_{\rm obs})'_{\ell m} = (d_{\rm obs})_{\ell m} / \sqrt{C_{\ell}^{ss}}.$

 $(t_i)'_{\ell m} = (t_i)_{\ell m} / \sqrt{C_\ell^{ss}},$

Impact of pixel covariance *Minor compared to methodological differences*.

No method particularly susceptible to Gaussian assumption

Let's leverage DESI

• Look at 400k lenses with DESI spectra

ZMC bias

ZMC bias

0.6

Photometric Redshift

zmean bias

0.8

10

• (But selection effects)

0.4

0.100

0.075

0.050

0.025

0.000

-0.025

-0.050

-0.075

-0.100

0.2

PhotoZ bias

Photometric Redshifts

- Photo-z's: major systematic of weak lensing surveys
- LSST is big, limited by control of systematics
- Spectra from DESI and DESI-II foundational for LSST science
- Photo-z estimation: learn $z \sim f$ (photometry) from existing spectroscopy
 - Two types: p(z) per *galaxy*, and N(z) for full *sample*
 - N(z) main target for 3x2pt, though p(z) important for narrow redshift bins

Buchs+ 2019

Problem of Representativity

Key challenge: spec samples not representative of target photometric samples!

- Different selections, spec failure rates, sample variance etc (e.g. Hartley+ 2021, Newman & Gruen 2022)
- Hard to quantify
- Myriad photo-z codes with different approaches, all with own secret sauce

Choices important!

• E.g. impact of different choices when combining/comparing different methods

Systematic impact of different photo-z choices DES Y3, 2x2pt

Giannini+, (DES Collaboration) 2022

Implications for DESI/DESI-II

- 1. *Direct calibration* of *N*(*z*) via targeted follow-up: circumvent most photo-z systematics
 - a. Can we identify regions in color-mag space where reasonable?
 - i. Don't need to calibrate all possible galaxy samples
 - ii. Inform LSST color selections
 - b. Opportunity: hybrid selection sample cleaning for free!
- 2. Training: important to get spectra for full range of color-mag space relevant for WL studies.
 - a. Is this possible? (See also Biprateep and Jeff's talk)

Characterize galaxies in mag-color space using SOM

- Self-Organizing Map (SOM): 2D non-linear projection of full color-mag space
 - Learned from data
- Galaxies grouped into cells, neighboring cells similar
- Axes arbitrary (but fixed)

https://en.wikipedia.org/wiki/Self-organizing_map

Match to DESI objects, populate with spec info (N=400k)

• Summarize *spectroscopic* characteristics for each cell

z spec [median] log10(Nspec) -10 3.0 40 40 2.5 0.8 30 30 2.0 0.6 1.5 20 20 0.4 -10 10 10 - 0.2 0.5 reliminary 0 0.0 0 0.0 20 30 10 40 0 10 20 30 40 72
Estimate time to obtain good redshift with DESI

• Compute estimated observing time for each spec gal

DirCal proof of concept proposal

- Initially proposed for ongoing DES Y6 legacy analysis
- 6 pointings, spread across overlap
- No dark time, but single pointing in XMM for 12 mins bright time
 Clustering redshift constraints

zbin

7000

8000

Results Promising!

Single pointing, ~99% success, reveals features missed by photo-z's

Looking toward LSST

- Sample with LSST Y1 depth
- All DR10 objects in COSMOS with 19 < i < 24.1 (N~610k)
- GRIZ

Can use DESI to identify problematic galaxy types in lens sample

• Assess photo-z bias per cell

Preliminary

What are these bad objects?

Contamination in the lenses!

Current Work

- Co-leading DES Y6 LSS systematics mitigation with improved methods
- Characterizing impacts of photo-z errors on WL surveys
- Synergies between spectroscopic surveys (e.g. DESI) and imaging surveys (e.g. LSST)
 - $\circ \quad \ \ Direct \ n(z) \ calibration$
 - Sample cleaning and optimization
- How to do cosmology in the era of climate change

Dark Energy Results

- Most powerful 3x2pt constraints from a single galaxy survey
- 2x improvement in S/N over Year 1
- Highly complementary to other probes!
- No evidence for deviation from w = -1(ACDM, cosmological constant)

In ACDM

- LSS competitive with CMB constraints \rightarrow but S_8 tension!
- LSST, DESI, Roman, SPHEREx...
 Large areas, number densities
 → small statistical error
- Need **exquisite** control of systematics to claim new physics

