The hunt for non-resonant signals of new physics at the LHC

Ilaria Brivio

Università & INFN Bologna

RSITÀ DI BOLOGN

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 1/25

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 1/25

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 1/25

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 1/25

Targeting non-resonant signals of new physics

Effective Field Theories

Effective Field Theories

Fermi Theory of β decay

Bottom-up paradigm

measuring EFT parameters reveals properties of full theory \rightarrow complement direct searches, reach into higher energies

EFT fully specified by **fields+symmetries at E** = μ

- \rightarrow no reference to underlying model
- \rightarrow free couplings that can be measured!

The Standard Model Effective Field Theory – SMEFT

promoting the Standard Model to an EFT

add higher-dimensional terms made of SM fields and respecting the SM symmetries

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots \qquad \mathcal{L}_d = \sum_i C_i \mathcal{O}_i^{(d)}
$$

 $C_i =$ Wilson coefficients

 $\mathcal{O}^{(d)}_i =$ gauge-invariant soperators forming a <u>basis</u>: a complete, non-redundant set Buchmüller, Wyler 1986

- **•** describes any beyond-SM theory, provided it lives at $\Lambda \gg v$
- a complete catalogue of all allowed beyond-SM effects, organized by expected size
- ▶ not experiment-specific! can be used as a common framework for LHC and other experiments
- § a proper QFT! renormalizable order-by-order, systematically improvable in loops

SMEFT at $d = 6$: the Warsaw basis

$\,^3$		φ^6 and $\,\varphi^4D^2\,$		$\psi^2\varphi^3$		
Q_G	$f^{ABC} G_\mu^{A\nu} G_\nu^{B\rho} G_\rho^{C\mu}$	Q_φ	$(\varphi^{\dagger} \varphi)^3$	$Q_{e\varphi}$	$(\varphi^\dagger \varphi)(\bar l_p e_r \varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$	$Q_{\varphi\Box}$	$(\varphi^{\dagger} \varphi) \Box (\varphi^{\dagger} \varphi)$	$Q_{u\varphi}$	$(\varphi^\dagger \varphi) (\bar q_p u_r \widetilde \varphi)$	
$Q_{\cal{W}}$	$\varepsilon^{IJK}W^{I\nu}_\mu W^{J\rho}_\nu W^{K\mu}_\rho$	$Q_{\varphi D}$	$\left(\varphi^\dagger D^\mu \varphi\right)^\star \left(\varphi^\dagger D_\mu \varphi\right)$	$Q_{d\varphi}$	$(\varphi^\dagger \varphi) (\bar q_p d_r \varphi)$	\odot 249
$Q_{\widetilde{\underline{W}}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_\mu W^{J\rho}_\nu W^{K\mu}_\rho$					
$X^2\varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^\dagger\varphi\,G^A_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar l_p \sigma^{\mu\nu} e_r) \tau^I \varphi W_{\mu\nu}^I$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overset{\cdot}{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	go j1
$Q_{\varphi\widetilde{G}}$	$\varphi^\dagger\varphi \, \widetilde{G}^A_{\mu\nu} G^{A\mu\nu}$	Q_{eB}	$(\bar l_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^\dagger i \widetilde{D}_\mu^{\,I} \, \varphi) (\bar l_p \tau^I \gamma^\mu l_r)$	syr
$Q_{\varphi W}$	$\varphi^\dagger\varphi\,W^I_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar q_p \sigma^{\mu\nu} T^A u_r) \widetilde\varphi\, G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\ddot{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Faroug Greljo
$Q_{\varphi\widetilde W}$	$\varphi^\dagger\varphi \, \widetilde{W}_{\mu\nu}^I W^{I\mu\nu}$	Q_{uW}	$(\bar q_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} \, W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^\dagger i \overset{.}{D}_\mu \varphi)(\bar q_p \gamma^\mu q_r)$	IB 201
$Q_{\varphi B}$	$\varphi^{\dagger} \varphi B_{\mu\nu} B^{\mu\nu}$	Q_{uB}	$(\bar q_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^\dagger i \, \breve{D}_\mu^{\,I} \, \varphi) (\bar q_p \tau^I \gamma^\mu q_r)$	tł
$Q_{\varphi\widetilde{B}}$	$\varphi^\dagger\varphi \, \widetilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overset{.}{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	at
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi \, W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar q_p \sigma^{\mu\nu} d_r) \tau^I \varphi \, W_{\mu\nu}^I$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{\underline{W}} \underline{B}}$	$\varphi^\dagger \tau^I \varphi \, \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p\sigma^{\mu\nu}d_r)\varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

free parameters

down to $O(100)$ mposing flavor mmetries, CP, B $\frac{1}{2}$ hy et al 2005.05366 et al 2203.09561 IB 2012.11343

> hey are \sim never all relevant the same time

Grzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 5/25

SMEFT at $d = 6$: the Warsaw basis

go down to O(100) imposing flavor symmetries, CP, B Faroughy et al 2005.05366 Greljo et al 2203.09561 IB 2012.11343

> they are \sim never all relevant at the same time

Grzadkowski,Iskrzynski,Misiak,Rosiek 1008.4884

Grzadkowski, Iskrzynski, Misiak, Rosiek 1008.4884

Challenges for the bottom-up SMEFT program

1. being sensitive to indirect BSM effects \rightarrow needs uncertainty reduction

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 6/25

Challenges for the bottom-up SMEFT program

1. being sensitive to indirect BSM effects \rightarrow needs uncertainty reduction

in bulk
$$
\sim \frac{v^2}{\Lambda^2} = \frac{v^2 g_{UV}}{M^2}
$$
. $g_{UV} \simeq 1$, $M \simeq 2 \,\text{TeV} \rightarrow 1.5\%$
on tails $\sim \frac{E^2}{\Lambda^2} \simeq \frac{E^2 g_{UV}}{M^2}$ $E \simeq 1 \,\text{TeV}, M \simeq 3 \,\text{TeV} \rightarrow 10\%$

2. making sure that, if we observe one, we interpret it correctly. needs:

- ▶ retaining all relevant contributions: all operators, NLO corrections...
	- \downarrow – handling many parameters in predictions and fits
	- understanding the theory structure
- ▶ correct understanding of uncertainties and correlations
- § systematic mapping to BSM models

A complex game

many free parameters entering many places \rightarrow scaling complexity $+$ non-trivial interconnections

Global analyses combining several measurements are necessary

- to access as many operators as we can
- ▶ to avoid bias in interpretation [safer than ad-hoc choices]

A field with many ramifications

SMEFT analyses: state of the art

- ▶ theory fits: $Higgs + EW$ (incl LEP) + top quark typically 30-35 param.
- \triangleright SMEFT theory predictions: computed at tree-level / 1-loop in QCD

$$
|\mathcal{M}_{\text{SMEFT}}|^2 = |\mathcal{M}_{\text{SM}}|^2 + \sum_{\alpha} \frac{C_{\alpha}}{\Lambda^2} \mathcal{M}_{\alpha} \mathcal{M}_{\text{SM}}^\dagger + \sum_{\alpha \beta} \frac{C_{\alpha} C_{\beta}}{\Lambda^4} \mathcal{M}_{\alpha} \mathcal{M}_{\beta}^\dagger
$$

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 9/25

SMEFT combined analyses in ATLAS and CMS

LHC experiments gearing up to do dedicated combination

important in order to use the full experimental information: better uncertainty and correlation estimates

ultimate goal: a cross-experiment cross-sector combined study

 $c_{0a}^{(\ell)}$ $c_{\alpha i}^{-\ell}$ $c_{\alpha\ell}^{3(\ell)}$ **ATI AS Preliminary** · Best Fit **Higgs** $EWPO$ \sqrt{s} = 13 TeV 36 1-139 fb -68 % CL $C_{\omega t} + 2$ $...$ Q5 % CI $-EW$ SMEET $\Lambda = 1$ Tel. Linear narameterisation $c_{\rm nth}$ c_{MC} $10 \times c_{HVV,VH}^{[1]}$ $c_{\alpha 0}^3$ $\begin{array}{c} c_{HVV,VH}^{[2]}\\ c_{HVV,VH}^{[3]}\\ c_{HVV,VH}^{[4]}\\ c_{HVV,VH}^{[5]}\\ c_{HVV,VH}^{[5]}\\ \end{array}$ ATL-PHYS-PUB-2022-037 022-037 c_{bW} $c_{10} \times 2$ $-0.04 - 0.02$ 0.02 0.04 Ω 001 CMS-TOP-19-001 $c_{\omega 0}$ + ΩÒ a dedicated Ξ -19 $c_{\text{tot}} \div 5$ CERN Working Group cw υ'n Š $c_{HVV,Vm}^{[6]}$
 $c_{HVV,Vm}^{[7]}$
 $c_{HVV,Vm}^{[8]}$ TL-PHY created in 2020 C_{17} to coordinate c_{tw} ž C_{BH} $-15 -10$ -20 15 20 [lpcc.web.cern.ch/lhc-eft-wg](#page-0-1) -0.4 -0.2 Ω 0.2 0.4 0.4 0.6 10 Parameter value expected fractiona Wilson coefficient CI / Λ^2 ITeV⁻²1 contribution Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 11/25

Others profiled

 $c_i^{\eta_\ell}$

 $c_i^{S(i)}$ $c_{i\alpha}^{(\ell)}$ $c_{ii}^{(\ell)}$

Others profiled (1a) Others fixed to SM (2o)

Others fixed to SM (1st

 \pm

41.5 fb⁻¹ (13 TeV)

CMS

Some open fronts

- \triangleright treatment of RG effects : 2-loop RGE, account for running+mixing in MC...
- ▶ improve theory predictions: optimize MC strategies, include EFT in backgrounds, PDFs...
- § properly account for experimental uncertainties and correlations in fits
- ▶ define optimal observables to improve sensitivity
- § understand and treat SMEFT-born uncertainties [scale dependence, missing higher orders in loops and EFT. . .]
- ▶ incorporate more processes: VBS, high-multiplicity final states, flavor physics, CP tests. . .
- \blacktriangleright handle 50+ dimensional likelihood
- ▶ explore interplay with resonance searches
- ▶ explore alternative EFT setups?

Non-resonant signals from light NP

Non-resonant signals can also be induced by new light states

 \rightarrow off-shell, in the limit $\sqrt{s}\gg m$ \rightarrow typically happens for heavy final states

 \rightarrow most relevant if they have momentum-enhanced couplings (EFT)

graviton G has $d = 5$ coupling $(G_{\mu\nu}\bar{t}_R \gamma^{\mu} D^{\nu} t_R)$, all others are $d = 4$ top-philic \rightarrow not ruled out by direct searches

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 13/25

An interesting case: Axion-Like Particles

ALP = pseudo-Goldstone boson from breaking of BSM symmetry

Fundamental properties

- § neutral, pseudo-scalar: spin 0, odd parity
- **•** approx. shift symmetry $a(x) \rightarrow a(x) + c$ \Rightarrow m_a naturally small

Why so interesting?

- **naturally the lightest remnant of heavy NP sectors** \rightarrow **easiest to discover**
- **•** spontaneous symmetry breakings are **ubiquitous** in BSM \rightarrow high relevance
- ▶ under certain conditions: good DM candidate

ALP Effective Field Theory

- ▶ ALPs can be described in a EFT where heavy sector is integrated out
- ▶ SM fields + a & SM symmetries + ALP shift sym. $(+ CP)$
- **►** Cutoff: f_a (ALP char. scale, reminiscent of f_π). LO: dimension 5

CP even: Georgi,Kaplan,Randall PLB169B(1986)73

$$
\begin{aligned} \mathcal{L}_{ALP} &= \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{m_a^2}{2}a^2 \\ &+ C_{\tilde{B}}O_{\tilde{B}} + C_{\tilde{W}}O_{\tilde{W}} + C_{\tilde{G}}O_{\tilde{G}} \\ &+ C_uO_u + C_dO_d + C_eO_e + C_QO_Q + C_LO_L \quad + \mathcal{O}(\mathit{f}_{a}^{-2}) \end{aligned}
$$

$$
O_{\tilde{B}} = -\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} \qquad O_{\tilde{W}} = -\frac{a}{f_a} W^I_{\mu\nu} \tilde{W}^{I\mu\nu} \qquad O_{\tilde{G}} = -\frac{a}{f_a} G^A_{\mu\nu} \tilde{G}^{A\mu\nu}
$$

$$
O_{f,ij} = \frac{\partial^{\mu} a}{f_a} (\bar{f}_i \gamma^{\mu} f_j) \qquad \rightarrow C_f: \quad N_g \times N_g \text{ symmetric matrices in flavor space}
$$

Recent developments in ALP EFT

relatively simple $EFT \rightarrow$ convenient theory playground. recently borrowed some expertise from SMEFT

- ▶ discussion on basis completeness
- ▶ RGE evolution, including CP-odd and shift-breaking terms Das Bakshi,Machado-Rodriguez,Ramos 2306.08036
- **▶ RGE mixing into SMEFT** Galda, Neubert,Renner 2105.01078
- ▶ comprehensive 1-loop study, incl. finite parts Bonilla, IB, Gavela, Sanz 2107.11392
- **b** unitarity constraints **IB, Eboli, González-García** 2106.05977
- ▶ flavor-invariant parameterization of shift-breakings Bonnefoy, Grojean, Kley 2206.04182
- ▶ Operator basis up to dim-8 Song,Sun,Yu 2305.16770
- **Hilbert series for operator counting** Group and Group Grojean, Kley, Yao 2307.08563
- ▶ Global analysis of LEP, LHC and flavor data Bruggisser, Grabitz, Westhoff 2308.11703

Chala,Guedes,Ramos,Santiago 2012.09017 Bauer,Neubert,Renner,Schnubel,Thamm 2012.12272 Bonilla,IB,Gavela,Sanz 2107.11392

Why?

How?

- ▶ tree-level access to couplings to heavy SM particles (W, Z, h, t)
- \blacktriangleright access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- ▶ tree-level access to couplings to heavy SM particles (W, Z, h, t)
- \blacktriangleright access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- Exter-level access to couplings to heavy SM particles (W, Z, h, t)
- F access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- Exter-level access to couplings to heavy SM particles (W, Z, h, t)
- F access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

▶ tree-level access to couplings to heavy SM particles (W, Z, h, t)

```
F access to heavy ALPs (m_a \gtrsim 10s GeV)
```


Non-resonant ALP signals at LHC

ZZ, γγ, tt: Gavela, No, Sanz, Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 WW, Z_{γ} : Carrá, Goumarre, Gupta, Heim, Heinemann, Küchler, Meloni, Quilez, Yap 2106.10085

ALP off-shell for $\boxed{m_a\ll m_1 + m_2\leqslant \sqrt{s}}$ "too light to be resonant"

Non-resonant ALP signals at LHC

ZZ, γγ, tt: Gavela, No, Sanz, Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 WW, Z_{γ} : Carrá, Goumarre, Gupta, Heim, Heinemann, Küchler, Meloni, Quilez, Yap 2106.10085

ALP off-shell for $\boxed{m_a\ll m_1 + m_2\leqslant \sqrt{s}}$ "too light to be resonant"

puts a constraint on $(g_{aGG} \times g_{aVV})$ product for g_{aGG} not too small, competitive bounds on g_{aVV}

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 18/25

Non-resonant searches in VBS

same principle, applied to Vector Boson Scattering

 \rightarrow independent of g_{aGG} (if pure ALP signal dominates, adding $C_{\tilde{G}}$ does not worsen bounds)

 \rightarrow compare to actual analyses by CMS: $W^{\pm}W^{\pm}$, $W^{\pm}Z$, $W^{\pm}\gamma$, $Z\gamma$, ZZ

Non-resonant searches in VBS: Run 2 results

Comparison with other constraints

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 21/25

Non-resonant searches in VBS: projections

HL-LHC: sensitivity improves \times 5 – 8 on XS $\rightarrow \times$ 1.5 – 1.7 on C_i / f_a

SMEFT vs ALPs in VBS

 $pp \rightarrow i j Z Z$ in SMEFT

- ▶ the Standard Model of particle physics is extremely successful, but not the ultimate theory!
- ▶ the Large Hadron Collider at CERN hasn't found evidence for new resonances vet
- in the next 20 years, it will collect 20 times more data than today $\rightarrow a$ precision machine!
- \triangleright SMEFT and EFTs in general can help us make the most out of this dataset! \rightarrow a very challenging program, being developed by theory and experiments
- ▶ Non-resonant signals interesting also for light new physics, e.g. top-philic bosons, ALPs... \rightarrow relevant at $\sqrt{s} \gg m$
	- \rightarrow can help cover **unexplored regions** of parameter space
- ▶ Interplay of non-resonant signals from heavy and light states not much explored yet

a newly approved COST Action!

"COmprehensive Multiboson Experiment-Theory Action"

- Λ very broad scientific program
	- ▶ SMEFT/HEFT studies of multi-boson processes (as many $H/W/Z$ as wished), also with global perspective
	- ▶ precision calculations and development of MC, PS etc
	- ▶ W, Z polarizations: conventions, higher-order predictions, MC
	- \blacktriangleright development of ML-based tools, together with ML experts outside academia: polarization taggers, jet taggers for VBF topologies, optimal observables. . .
- ϵ for networking: will organize **workshops, schools, topical meetings** $+$ funds for short/medium-term visits to other institutions within Europe
- **g** currently $\sim 1/3$ theorists $+ 2/3$ experimentalists $+$ a few ML experts

funding will start in November, activities in $2024 - 2027$

sign up & more info at www.cost.eu/actions/CA22130/

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 25/25

Backup slides

SMEFT fit results

Fisher information

ttV op. constrained by $h \rightarrow \gamma \gamma$, single-t, t $\bar{t}V$

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) $27/25$

Top and Higgs interplay

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 28/25

Reduced fits via matching to UV models

Impact of higher order operators

EFT obtained from matching to full model

Impact of higher order operators

EFT obtained from matching to full model

Impact of higher order operators

EFT obtained from matching to full model

top-down: C_i fixed by matching \rightarrow EFT not valid in high-E region

bottom-up: fit C_i to data tends to make EFT match full result \rightarrow find wrong values of C_i

how to keep this into account?

sliding upper cut: Contino,Falkowski,Goertz, Grojean,Riva 1604.06444

uncertainty band: Trott et al 1508.05060,2007.00565,2106.13794 Hays,Martin,Sanz,Setford 1808.00442 Shepherd et al 1812.07575,1907.13160

compute at $O(\Lambda^{-4})$ compute at U(۸)
Boughezal,Mereghetti,Petriello 2106.05337 Asteriadis,Dawson,Fontes,Homiller,Sullivan 2110.06929,2205.01561,2212.03258

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 30/25

SMEFT or HEFT?

a component of the $d = 6$ vs model discrepancy can be removed by reabsorbing higher powers of v within $d = 6$ coefficients instead of leaving them to $d \ge 8$

conceptually same as matching to HEFT instead

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 31/25

rather than H doublet: singlet $h +$ Goldstones U Feruglio 9301281, Grinstein, Trott 0704.1505, Buchalla, Catà 1203.6510, Alonso et al 1212.3305, IB et al 1311.1823,1604.06801, Buchalla et al 1307.5017,1511.00988. . .

$$
H \mapsto \frac{v+h}{\sqrt{2}} \boxed{\mathbf{U}}, \qquad \mathbf{U} = \exp\left(\frac{i\vec{\sigma} \cdot \vec{\pi}}{v}\right)
$$

 $HEFT \supset SMEFT \supset SM$

- more general than SMEFT because implements weaker symmetry requirement
- **more complicated** power counting, mix of χ PT and canonical dimensions
- more operators order-by-order in the expansions

however, the $H \rightarrow h$, **U** map above must be an **unphysical** field redefinition!

Bounds on ALP couplings

Bounds on ALP couplings

Dependence on ALP mass and width

ightharpoonup as $q^2 \gg m_a, \Gamma_a$, independent of exact values of mass and width "reverse" of an EFT $(q^2 \gg m^2 \text{ vs } q^2 \ll m^2 \text{ limit})$

▶ XS stable up until $m_a \le 100$ GeV

Perturbative unitarity

 $partial-wave decomposition for 2 \rightarrow 2 scattering:$

$$
V_i = \text{vector bosons or scalars}
$$
\n
$$
\lambda_i = \text{helicities } (V:\lambda_i = 0, \pm 1, S:\lambda_i \equiv 0), \lambda = \lambda_1 - \lambda_2, \mu = \lambda_3 - \lambda_4
$$
\n
$$
T^J = \text{amplitude for } J\text{-wave scattering}
$$
\n
$$
V_1^{\lambda_1}
$$
\n
$$
= 16\pi \sum_j (2J+1)\sqrt{1 + \delta_{V_1\lambda_1}^{V_2\lambda_2}}\sqrt{1 + \delta_{V_3\lambda_3}^{V_3\lambda_4}}e^{i(\lambda - \mu)\phi}d_{\lambda\mu}^J(\theta) \frac{T^J(V_1^{\lambda_1}V_2^{\lambda_2} \to V_3^{\lambda_3}V_4^{\lambda_4})}{T^J(V_1^{\lambda_1}V_2^{\lambda_2} \to V_3^{\lambda_3}V_4^{\lambda_4})}
$$

 $\text{unitarity} = \left| T^{J} (V_1^{\lambda_1} V_2^{\lambda_2} \rightarrow V_1^{\lambda_1} V_2^{\lambda_2}) \right| \leq 1 \text{ for } s \gg (M_1 + M_2)$ [defined for elastic scattering]

unitarity violation = unphysical pred. \rightarrow the theory is not valid: new dynamical states must be included pert. expansion is not valid: entering a non-perturbative regime

$$
\text{in ALP EFT: } \boxed{|T^J| \sim \left[C_i \frac{\sqrt{s}}{f_a} \right]^n \left[\frac{\sqrt{s}}{m_W} \right]^m} \text{ becomes } > 1 \text{ for large } \sqrt{s} \text{ or } (C_i/f_a)
$$

Ilaria Brivio (UniBo & INFN) [The hunt for non-resonant signals of new physics at the LHC](#page-0-0) 36/25

Perturbative unitarity in ALP EFT

Calculation strategy **IB, Eboli, González-García** 2106.05977 also: Corbett, Éboli, González-García, 1411.5026,1705.09294

- 1. compute partial waves for <u>all</u> possible $2 \rightarrow 2$ processes in large \sqrt{s} lim:
	- $V_1V_2 \rightarrow V_3V_4$ $V_1a \rightarrow V_2a$ $V_1V_2 \rightarrow aa$ $V_1V_2 \rightarrow V_3a$ $ha \rightarrow ha$ $hh \rightarrow aa$ $f_1 \bar{f_2} \rightarrow Va$
- $\, {\bf 2.} \,$ construct $\, T^{J=0},\, T^{J=1} \,$ matrices in final states (particle and helicity) space \rightarrow block-diagonal classifying processes by Q and color contraction
- **3. diagonalize** T^J matrices \rightarrow "overall" constraint on theory
- **4.** apply elastic unitarity requirement $|t^J| \leq 1$ on each eigenvalue

Unitarity constraints on ALP couplings

 \blacktriangle \sqrt{s} overall scale, cannot be interpreted "literally" in specific processes

Unitarity constraints on ALP couplings

 \blacktriangle \sqrt{s} overall scale, cannot be interpreted "literally" in specific processes

Unitarity constraints on ALP couplings

 \blacktriangle \sqrt{s} overall scale, cannot be interpreted "literally" in specific processes