The hunt for non-resonant signals of new physics at the LHC

Ilaria Brivio

Università & INFN Bologna

1 D 1088

ALMA MATER STUDIORUM Università di Bologna

Ilaria Brivio (UniBo & INFN)

Ilaria Brivio (UniBo & INFN)

Targeting non-resonant signals of new physics

p_iet1 [GeV]

80 100 120 140 160 180

m₄₁ (GeV)

0.5 -0.5 *************

100

250

200

Effective Field Theories

Effective Field Theories

Fermi Theory of β decay

Bottom-up paradigm

measuring EFT parameters **reveals properties** of full theory \rightarrow *complement* direct searches, reach into higher energies

EFT fully specified by **fields+symmetries** at $\mathbf{E} = \mu$

- \rightarrow no reference to underlying model
- \rightarrow free couplings that can be measured!

The Standard Model Effective Field Theory – SMEFT

promoting the Standard Model to an EFT

add **higher-dimensional** terms made of SM **fields** and respecting the SM **symmetries**

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^3} \mathcal{L}_7 + \frac{1}{\Lambda^4} \mathcal{L}_8 + \dots \qquad \mathcal{L}_d = \sum_i C_i \mathcal{O}_i^{(d)}$$

 $C_i =$ Wilson coefficients

 $\mathcal{O}_{i}^{(d)} =$ gauge-invariant operators forming a <u>basis</u>: a complete, non-redundant set

- describes any beyond-SM theory, provided it lives at $\Lambda \gg v$
- ▶ a complete catalogue of all allowed beyond-SM effects, organized by expected size
- > not experiment-specific! can be used as a common framework for LHC and other experiments
- ▶ a proper QFT! renormalizable order-by-order, systematically improvable in loops

Ilaria Brivio (UniBo & INFN)

SMEFT at d = 6: the Warsaw basis

X ³		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$]
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\daggerarphi)^3$	$Q_{e\varphi}$	$(arphi^\dagger arphi) (ar{l}_p e_r arphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(arphi^\daggerarphi) \Box (arphi^\daggerarphi)$	$Q_{u\varphi}$	$(arphi^{\dagger}arphi)(ar{q}_{p}u_{r}\widetilde{arphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(arphi^{\dagger} D^{\mu} arphi ight)^{\star} \left(arphi^{\dagger} D_{\mu} arphi ight)$	$Q_{d\varphi}$	$(arphi^\dagger arphi) (ar q_{p} d_{r} arphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$					14
	$X^2 \varphi^2$	$\psi^2 X arphi$		$\psi^2 arphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu u} e_r) \tau^I \varphi W^I_{\mu u}$	$Q_{arphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\overline{l}_{p}\gamma^{\mu}l_{r})$	go (
$Q_{\varphi \widetilde{G}}$	$arphi^{\dagger}arphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q_{arphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	syn
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu u} T^A u_r) \widetilde{\varphi} G^A_{\mu u}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Farougi Greljo e
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu u} u_r) \tau^I \widetilde{\varphi} W^I_{\mu u}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	TB 2012
$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu u} u_r) \widetilde{\varphi} B_{\mu u}$	$Q^{(3)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	th
$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	at
$Q_{\varphi WB}$	$arphi^\dagger au^I arphi W^I_{\mu u} B^{\mu u}$	Q_{dW}	$(ar{q}_p \sigma^{\mu u} d_r) au^I arphi W^I_{\mu u}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	at
$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu u} d_r) \varphi B_{\mu u}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

2499 free parameters

go down to O(100) imposing flavor symmetries, CP, B Faroughy et al 2005.05366 Greljo et al 2203.09561 IB 2012.11343

> they are \sim never all relevant at the same time

Ilaria Brivio (UniBo & INFN)

SMEFT at d = 6: the Warsaw basis

			1				ñ
$(\bar{L}L)(\bar{L}L)$		$(ar{R}R)(ar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
Q	2u	$(ar{l}_p \gamma_\mu l_r) (ar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$	
Q_{i}	$\stackrel{(1)}{qq}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p\gamma_\mu l_r)(ar{u}_s\gamma^\mu u_t)$	
Q_{i}	(3) qq	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p\gamma_\mu l_r)(ar{d}_s\gamma^\mu d_t)$	
Q_{i}	$_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar{q}_p \gamma_\mu q_r) (ar{e}_s \gamma^\mu e_t)$	
Q_{i}	$lq^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$	
			$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
			$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$	
					$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$			<i>B</i> -violating			Ĩ	
Q_l	ledq	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$			
$Q_q^{(i)}$	1) Jugd	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon_{qqu} = arepsilon^{lphaeta\gamma}arepsilon_{jk} \left[(q_p^{lpha j})^T C q_r^{etak} ight] \left[(u_s^{\gamma})^T C e_t ight]$			
$Q_q^{(i)}$	8) Jugd	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq} \qquad \varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn} \left[(q_p^{\alpha j})^T C q_r^{\beta k} \right] \left[(q_s^{\gamma m})^T C l_t^n \right]$				
$Q_{l}^{(}$	(1) lequ	$(ar{l}_p^j e_r) arepsilon_{jk} (ar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_{p}^{lpha})^{T}Cu_{r}^{eta} ight]\left[(u_{s}^{\gamma})^{T}Ce_{t} ight]$			
$Q_{l}^{(i)}$	(3) leau	$(\bar{l}_{p}^{j}\sigma_{\mu\nu}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}\sigma^{\mu\nu}u_{t})$					

go down to O(100) imposing flavor symmetries, CP, B Faroughy et al 2005.05366 Greljo et al 2203.09561 IB 2012.11343

> they are \sim never all relevant at the same time

Ilaria Brivio (UniBo & INFN)

Challenges for the bottom-up SMEFT program

1. being **sensitive** to indirect BSM effects \rightarrow needs uncertainty reduction

Ilaria Brivio (UniBo & INFN)

Challenges for the bottom-up SMEFT program

1. being **sensitive** to indirect BSM effects \rightarrow needs uncertainty reduction

in bulk
$$\sim \frac{v^2}{\Lambda^2} = \frac{v^2 g_{UV}}{M^2}$$
. $g_{UV} \simeq 1$, $M \simeq 2 \text{ TeV} \rightarrow 1.5\%$
on tails $\sim \frac{E^2}{\Lambda^2} \simeq \frac{E^2 g_{UV}}{M^2}$ $E \simeq 1 \text{ TeV}$, $M \simeq 3 \text{ TeV} \rightarrow 10\%$

- 2. making sure that, if we observe one, we interpret it correctly. needs:
 - retaining <u>all relevant contributions</u>: all operators, NLO corrections...
 - handling many parameters in predictions and fits
 - understanding the theory structure
 - correct understanding of uncertainties and correlations
 - systematic mapping to BSM models

A complex game

many free parameters entering many places \rightarrow scaling complexity + non-trivial interconnections

Global analyses combining several measurements are necessary

- to access as many operators as we can
- to avoid bias in interpretation [safer than ad-hoc choices]

A field with many ramifications

SMEFT analyses: state of the art

- theory fits: Higgs + EW (incl LEP) + top quark typically 30-35 param.
- SMEFT theory predictions: computed at tree-level / 1-loop in QCD

$$|\mathcal{M}_{\textit{SMEFT}}|^2 = |\mathcal{M}_{\textit{SM}}|^2 + \sum_{\alpha} \frac{\mathcal{C}_{\alpha}}{\Lambda^2} \mathcal{M}_{\alpha} \mathcal{M}_{\textit{SM}}^{\dagger} + \sum_{\alpha\beta} \frac{\mathcal{C}_{\alpha} \mathcal{C}_{\beta}}{\Lambda^4} \mathcal{M}_{\alpha} \mathcal{M}_{\beta}^{\dagger}$$

Ilaria Brivio (UniBo & INFN)

Ilaria Brivio (UniBo & INFN)

Ilaria Brivio (UniBo & INFN)

SMEFT combined analyses in ATLAS and CMS

LHC experiments gearing up to do dedicated combination

important in order to use the full experimental information: **better uncertainty and correlation estimates**

 C_{HG} 10 × $c^{[1]}_{HVV,VII}$

> $C^{[e]}_{HVV,VI}$ $C^{[3]}_{HVV,VI}$

 $c^{[4]}_{HVV,VII}$ $c^{[5]}_{HVV,VII}$

> $c^{[1]}_{2q^{2}}$ $c^{[1]}_{4q}$

C_W c_{HVV,V1} c_{HVV,V1} c_{HVV,V1} c_{HVV,V1}

Ch4

ultimate goal: a cross-experiment cross-sector combined study

ATI AS Preliminary

√s =13 TeV, 36.1-139 fb⁻ SMEET ∆ = 1 TeV

-0.02

Parameter value

-0.04

-04 -02

Linear parameterisation

Others fixed to SM (2o) ÷ CMS $c_i^{T(\ell)}$ Others fixed to SM (1m) $c_i^{S(l)}$ $c_{in}^{(\ell)}$ $c_{ii}^{(\ell)}$ $c_{0e}^{(\ell)}$ c_($c_{0'}^{3(l)}$ Higgs EWPO Cost + 2 EW Conth c_{a0}^{3} ChW Cic × 2 OP-19-001 $C_{\alpha \Omega}^{-}$ + 2 $C_{Vn} \div 5$ C17 MS-Cim -20 -15 -10 15 20 10 0.4 0.6 0.8 expected fractiona Wilson coefficient CI / A2 [TeV-2] contribution

Others profiled (20

Others profiled (1a)

41.5 fb⁻¹ (13 TeV)

a dedicated CERN Working Group created in 2020 to coordinate

lpcc.web.cern.ch/lhc-eft-wg

Ilaria Brivio (UniBo & INFN)

The hunt for non-resonant signals of new physics at the LHC

0.4

Best Eit

- 68 % CL

----- 95 % CL

0.02 0.04

Some open fronts

- treatment of RG effects : 2-loop RGE, account for running+mixing in MC...
- improve theory predictions: optimize MC strategies, include EFT in backgrounds, PDFs...
- properly account for experimental uncertainties and correlations in fits
- define optimal observables to improve sensitivity
- understand and treat SMEFT-born uncertainties
 [scale dependence, missing higher orders in loops and EFT...]
- incorporate more processes:
 VBS, high-multiplicity final states, flavor physics, CP tests...
- handle 50+ dimensional likelihood
- explore interplay with resonance searches
- explore alternative EFT setups?

Non-resonant signals from light NP

Non-resonant signals can also be induced by new light states

 \rightarrow off-shell, in the limit $\sqrt{s} \gg m \rightarrow$ typically happens for heavy final states

 \rightarrow most relevant if they have momentum-enhanced couplings (EFT)

graviton G has d = 5 coupling $(G_{\mu\nu} \bar{t}_R \gamma^{\mu} D^{\nu} t_R)$, all others are d = 4top-philic \rightarrow not ruled out by direct searches

Ilaria Brivio (UniBo & INFN)

An interesting case: Axion-Like Particles

ALP = pseudo-Goldstone boson from breaking of BSM symmetry

Examples:

Peccei-Quinn symm.	\rightarrow	QCD axion	Peccei,Quinn 1977, Weinberg 1978 Wilczek 1978
Lepton number	\rightarrow	Majoron	Gelmini,Roncadelli 1981 Langacker,Peccei,Yanagida 1986
Flavor symm.	\rightarrow	Flavon	Wilczek 1982

Fundamental properties

- neutral, pseudo-scalar: spin 0, odd parity
- ▶ approx. shift symmetry $a(x) \rightarrow a(x) + c \Rightarrow m_a$ naturally small

Why so interesting?

- ▶ naturally the lightest remnant of heavy NP sectors \rightarrow easiest to discover
- ▶ spontaneous symmetry breakings are **ubiquitous** in BSM \rightarrow high relevance
- under certain conditions: good DM candidate

ALP Effective Field Theory

- ALPs can be described in a EFT where heavy sector is integrated out
- SM fields + a & SM symmetries + ALP shift sym. (+ CP)
- Cutoff: f_a (ALP char. scale, reminiscent of f_{π}). LO: dimension 5

CP even: Georgi, Kaplan, Randall PLB169B(1986)73

$$\begin{split} \mathcal{L}_{ALP} &= \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a^2}{2} a^2 \\ &+ C_{\tilde{B}} O_{\tilde{B}} + C_{\tilde{W}} O_{\tilde{W}} + C_{\tilde{G}} O_{\tilde{G}} \\ &+ C_u O_u + C_d O_d + C_e O_e + C_Q O_Q + C_L O_L \quad + \mathcal{O}(f_a^{-2}) \end{split}$$

$$\begin{split} O_{\tilde{B}} &= -\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} \qquad O_{\tilde{W}} = -\frac{a}{f_a} W_{\mu\nu}^I \tilde{W}^{I\mu\nu} \qquad O_{\tilde{G}} = -\frac{a}{f_a} G_{\mu\nu}^A \tilde{G}^{A\mu\nu} \\ O_{f,ij} &= \frac{\partial^{\mu} a}{f_a} \left(\bar{f}_i \gamma^{\mu} f_j \right) \qquad \rightarrow C_f : \qquad N_g \times N_g \text{ symmetric matrices in flavor space} \end{split}$$

Recent developments in ALP EFT

relatively simple EFT \rightarrow convenient theory playground. recently borrowed some expertise from SMEFT

- discussion on basis completeness
- RGE evolution, including CP-odd and shift-breaking terms
- RGE mixing into SMEFT
- comprehensive 1-loop study, incl. finite parts
- unitarity constraints
- flavor-invariant parameterization of shift-breakings
- Operator basis up to dim-8
- Hilbert series for operator counting
- Global analysis of LEP, LHC and flavor data

Chala, Guedes, Ramos, Santiago 2012.09017 Bauer, Neubert, Renner, Schnubel, Thamm 2012.12272 Bonilla, IB, Gavela, Sanz 2107.11392

Das Bakshi, Machado-Rodriguez, Ramos 2306.08036

Galda, Neubert, Renner 2105.01078

Bonilla, IB, Gavela, Sanz 2107.11392

IB, Éboli, González-García 2106.05977

Bonnefoy, Grojean, Kley 2206.04182

Song,Sun,Yu 2305.16770

Grojean, Kley, Yao 2307.08563

Bruggisser, Grabitz, Westhoff 2308.11703

Why?

How?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Ilaria Brivio (UniBo & INFN)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

• tree-level access to couplings to heavy SM particles (W, Z, h, t)

```
• access to heavy ALPs (m_a \gtrsim 10s GeV)
```


Ilaria Brivio (UniBo & INFN)

Non-resonant ALP signals at LHC

 $ZZ,\,\gamma\gamma,\,t\bar{t}:$ Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 $WW,\,Z\gamma:$ Carrá,Goumarre,Gupta,Heim,Heinemann,Küchler,Meloni,Quilez,Yap 2106.10085

ALP off-shell for $m_a \ll m_1 + m_2 \leqslant \sqrt{s}$ "too light to be resonant"

Non-resonant ALP signals at LHC

 $ZZ, \gamma\gamma, t\bar{t}$: Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 *WW, Z\gamma*: Carrá,Goumarre,Gupta,Heim,Heinemann,Küchler,Meloni,Quilez,Yap 2106.10085

ALP off-shell for $m_a \ll m_1 + m_2 \leqslant \sqrt{s}$ "too light to be resonant"

puts a constraint on $(g_{aGG} \times g_{aVV})$ product for g_{aGG} not too small, competitive bounds on g_{aVV}

Ilaria Brivio (UniBo & INFN)

Non-resonant searches in VBS

same principle, applied to Vector Boson Scattering

 \rightarrow independent of g_{aGG} (if pure ALP signal dominates, adding $C_{\tilde{G}}$ does not worsen bounds)

 \rightarrow compare to actual analyses by CMS: $W^{\pm}W^{\pm}, W^{\pm}Z, W^{\pm}\gamma, Z\gamma, ZZ$

Non-resonant searches in VBS: Run 2 results

Comparison with other constraints

Ilaria Brivio (UniBo & INFN)

Non-resonant searches in VBS: projections

HL-LHC: sensitivity improves $\times 5 - 8$ on XS $\rightarrow \times 1.5 - 1.7$ on C_i/f_a

SMEFT vs ALPs in VBS

 $pp \rightarrow jjZZ$ in SMEFT

- the Standard Model of particle physics is extremely successful, but not the ultimate theory!
- the Large Hadron Collider at CERN hasn't found evidence for **new resonances** yet
- ▶ in the next 20 years, it will collect 20 times more data than today \rightarrow a precision machine!
- SMEFT and EFTs in general can help us make the most out of this dataset! → a very challenging program, being developed by theory and experiments
- ▶ Non-resonant signals interesting also for light new physics , e.g. top-philic bosons, ALPs... → relevant at $\sqrt{s} \gg m$
 - \rightarrow can help cover unexplored regions of parameter space
- Interplay of non-resonant signals from heavy and light states not much explored yet

a newly approved COST Action!

"COmprehensive Multiboson Experiment-Theory Action"

- ▲ very broad scientific program
 - SMEFT/HEFT studies of multi-boson processes (as many H/W/Z as wished), also with global perspective
 - precision calculations and development of MC, PS etc
 - W, Z polarizations: conventions, higher-order predictions, MC
 - development of ML-based tools, together with ML experts outside academia: polarization taggers, jet taggers for VBF topologies, optimal observables...
- € for networking: will organize workshops, schools, topical meetings + funds for short/medium-term visits to other institutions within Europe
- ${f a}$ currently $\sim 1/3$ theorists + 2/3 experimentalists + a few ML experts

💾 funding will start in November, activities in 2024 – 2027

sign up & more info at www.cost.eu/actions/CA22130/

Ilaria Brivio (UniBo & INFN)

Backup slides

SMEFT fit results

Fisher information

ttV op. constrained by $h \rightarrow \gamma \gamma$, single-*t*, $t\bar{t}V$

Top and Higgs interplay

2105.00006 Ethier, Maltoni, Mantani, Nocera, Rojo

Ilaria Brivio (UniBo & INFN)

Reduced fits via matching to UV models

Impact of higher order operators

EFT obtained from matching to full model

Impact of higher order operators

EFT obtained from matching to full model

Impact of higher order operators

EFT obtained from matching to full model

top-down: C_i fixed by matching \rightarrow EFT not valid in high-E region

bottom-up: fit C_i to data tends to make FFT match full result. \rightarrow find wrong values of C_i

how to keep this into account?

uncertainty band: Trott et al 1508.05060.2007.00565.2106.13794 Contino, Falkowski, Goertz, Havs.Martin.Sanz.Setford 1808.00442 Groiean.Riva 1604.06444 Shepherd et al 1812.07575.1907.13160

compute at $O(\Lambda^{-4})$

Boughezal, Mereghetti, Petriello 2106.05337 Asteriadis.Dawson.Fontes.Homiller.Sullivan 2110.06929.2205.01561.2212.03258

Ilaria Brivio (UniBo & INFN)

sliding upper cut:

SMEFT or HEFT?

a component of the d = 6 vs model discrepancy can be removed by reabsorbing higher powers of v within d = 6 coefficients instead of leaving them to $d \ge 8$

conceptually same as matching to **HEFT** instead

What is **HEFT**?

rather than H doublet: singlet h + Goldstones **U** Feruglio 9301281, Grinstein, Trott 0704.1505, Buchalla, Catà 1203.6510, Alonso et al 1212.3305, IB et al 1311.1823,1604.06801, Buchalla et al 1307.5017,1511.00988. . .

$$H\mapsto rac{v+h}{\sqrt{2}}$$
 U, $\mathbf{U}=\exp\left(rac{iec{\sigma}\cdotec{\pi}}{v}
ight)$

 $\mathsf{HEFT} \supset \mathsf{SMEFT} \supset \mathsf{SM}$

- more general than SMEFT because implements weaker symmetry requirement
- more complicated power counting, mix of χ PT and canonical dimensions
- more operators order-by-order in the expansions

however, the $H \rightarrow h$, **U** map above must be an **unphysical** field redefinition!

Bounds on ALP couplings

Bounds on ALP couplings

Dependence on ALP mass and width

► as long as $q^2 \gg m_a$, Γ_a , **independent** of exact values of mass and width "reverse" of an EFT $(q^2 \gg m^2 \text{ vs } q^2 \ll m^2 \text{ limit})$

• XS stable up until $m_a \lesssim 100 \text{ GeV}$

Perturbative unitarity

partial-wave decomposition for $2 \rightarrow 2$ scattering:

$$V_{i} = \text{vector bosons or scalars}$$

$$\lambda_{i} = \text{helicities } (\mathsf{V}:\lambda_{i} = 0, \pm 1, \ \mathsf{S}:\lambda_{i} \equiv 0), \ \lambda = \lambda_{1} - \lambda_{2}, \ \mu = \lambda_{3} - \lambda_{4}$$

$$T^{J} = \text{amplitude for } J\text{-wave scattering}$$

$$V_{1}^{\lambda_{1}} = 16\pi \sum_{J} (2J+1)\sqrt{1 + \delta_{V_{1}\lambda_{1}}^{V_{2}\lambda_{2}}} \sqrt{1 + \delta_{V_{3}\lambda_{3}}^{V_{3}\lambda_{4}}} e^{i(\lambda-\mu)\phi} d_{\lambda\mu}^{J}(\theta) T^{J}(V_{1}^{\lambda_{1}}V_{2}^{\lambda_{2}} \rightarrow V_{3}^{\lambda_{3}}V_{4}^{\lambda_{4}})$$

$$V_{2}^{\lambda_{2}} = V_{4}^{\lambda_{4}}$$

 $unitarity = |T^{J}(V_{1}^{\lambda_{1}}V_{2}^{\lambda_{2}} \rightarrow V_{1}^{\lambda_{1}}V_{2}^{\lambda_{2}})| \leq 1 \text{ for } s \gg (M_{1} + M_{2})^{2} \text{ [defined for elastic scattering]}$

unitarity violation = unphysical pred. pert. expansion is not valid: entering a non-perturbative regime

in ALP EFT:
$$|T^{J}| \sim \left[C_{i} \frac{\sqrt{s}}{f_{a}}\right]^{n} \left[\frac{\sqrt{s}}{m_{W}}\right]^{m}$$
 becomes > 1 for large \sqrt{s} or (C_{i}/f_{a})

Ilaria Brivio (UniBo & INFN)

The hunt for non-resonant signals of new physics at the LHC

Jacob Wick 1959

Perturbative unitarity in ALP EFT

Calculation strategy

IB,Éboli,González-García 2106.05977 also: Corbett,Éboli,González-García 1411.5026,1705.09294

- **1.** compute partial waves for <u>all</u> possible $2 \rightarrow 2$ processes in large \sqrt{s} lim:
 - $\begin{array}{cccc} V_1 V_2 \rightarrow V_3 V_4 & V_1 a \rightarrow V_2 a & V_1 V_2 \rightarrow a a & V_1 V_2 \rightarrow V_3 a \\ ha \rightarrow ha & hh \rightarrow a a & f_1 \bar{f_2} \rightarrow V a \end{array}$
- 2. construct $T^{J=0}$, $T^{J=1}$ matrices in final states (particle and helicity) space \rightarrow block-diagonal classifying processes by Q and color contraction
- **3. diagonalize** T^J matrices \rightarrow "overall" constraint on theory
- 4. apply elastic unitarity requirement $|t^J| \leqslant 1$ on each eigenvalue

Unitarity constraints on ALP couplings

 $A \sqrt{s}$ overall scale, cannot be interpreted "literally" in specific processes

Unitarity constraints on ALP couplings

 $A \sqrt{s}$ overall scale, cannot be interpreted "literally" in specific processes

Unitarity constraints on ALP couplings

 $A \sqrt{s}$ overall scale, cannot be interpreted "literally" in specific processes