Status SANDA Deliverable 1.1

- WP1: Developments of new innovative detector devices
 - Task 1.1: Innovative devices from fission cross section to fission products decay studies
 - -- Subtask 1.1.1: fission cross sections
 - Subtask subdivision: Development of two new detector devices:
 - 1.1.1_1: LP2i-Bordeaux: Gaseous Proton Recoil Telescope (GPRT)
 - 1.1.1_2: CEA: Micromegas-based "transparent" detector with XY readout and TOF capable electronics
- D.1.1 (M48+6): "Report on the study and construction of new devices for precise fission cross section measurements"

GPRT detector

- Goal: accurate neutron flux measurement, relative to H(n,n)
- Detector characteristics:
 - <u>Gas detector</u>: to reduce γ /e sensitivity
 - Two chambers with collimator:
 - . to select only forward protons and define precisely the detection efficiency
 - Micromegas detector:
 - . combination of ionization chamber (low electric field) and proportional chamber (high electric field)
 - . high range in gain, good radiation hardness, good timing
 - . for signal amplification
 - <u>Segmented</u>:
 - . crude segmentation in 64 pads
 - . enables to reconstruct proton track and help background discrimination
 - <u>TPC</u>:
 - . drift time measurement
 - . enables to reconstruct 3D proton track and infer initial neutron energy

GPRT detector: status

• Detector performances:

- very low sensitivity to γ/e^{-}
- 3D track reconstruction
- good electric behaviour
- suitable N₂-CO₂ mixture (good gain, good timing)

• DAQ performances:

- an efficiency issue which lasted a very long time
- problem now identified, due to incorrect signal transmission
- in "low performance mode", ϵ = 100% and dead time manageable
- ⇒ minimal performance requirements met !

• Analysis tools:

- goal: automatic data sorting, background correction, parasite correction...
- implemented features:
 - . navigation through data
 - . data plotting (spectra and 2D)
 - . parasitic correction

• Contribution to the D1.1 report: still planed by end of February

XyMegas detector

- Goal: develop a Micromegas microbulk neutron detector which combines:
 - neutron beam imaging and neutron flux measurements
 - neutron-induced (n,f) and (n,lcp) reaction cross sections
 - angular distributions of neutron-induced reactions

Micromegas detectors:

- Gaseous parallel plate detectors for charged particles and X-ray and UV photons,
- Neutron detection possible via neutron to charged-particle conversion.
- type bulk (PCB integrated)
- type microbulk (double sided copper-coated Kapton foil)
- Technical implementation:
 - Micromegas low-mass microbulk detector (transparency) with X- and Y-strips produced with Laser Direct Imaging (LDI)⁹

• SANDA funding completed with French ANR project XyMegas, in partnership with JRC-Geel

XyMegas detector: status

• **Prototype** (manufactured at CERN):

- 50 µm thick detector "transparent" microbulk detector
- 128x128 strips
- geometrical quantification done
- mounted in detector chamber

• DAQ:

- VMM3 development board received.
- PCB boards designed and produced to interface VMM3 electronics and HV distribution
- Tests: in lab environment using a ⁵⁵Fe X-ray source

Postdoc recruitment:

- a first postdoc could be recruited only early 2022 and has left by the end of 2022 because of family reasons

- a second postdoc was recruited early 2023 and has advanced on the simulations part using FLUKA, Garfield++, and GEANT4.

• Contribution to the D1.1 report:

- with a focus on the simulations
- is still expected by end of February.

The full D.1.1 report still needs merging and final review

Example of a ⁶Li(n,a) particle range inside the detector