SANDA WP2/Task 2.2 report

Alberto Mengoni on behalf of the Task 2.2 partners: ENEA, CIEMAT, JRC-Geel, Uni Lodz, IRSN

SANDA WP2/Task 2.2 definition

Task 2.2: Neutron capture cross sections

Task coordinator: ENEA, partners: CIEMAT, JRC, ULODZ, IRSN

Subtask 2.2.1. Capture measurements of fissile isotopes.

CIEMAT, ULODZ and JRC will perform various cross section measurements at GELINA and n_TOF on the high priority reactions ²³⁹Pu(n,g) and ²³⁹Pu(n,f). The methodology developed within CHANDA for the absolute measurement of the ²³⁵U alfa ratio will be applied to the ²³⁹Pu case. A new ionization chamber built by ULODZ will be tested in a ²³⁹Pu(n,f) measurement at JRC, which also deliver the ²³⁹Pu samples. The combined measurement of the ²³⁹Pu(n,g) and ²³⁹Pu(n,f) cross sections will be carried out at CERN with the use of the Total Absorption Calorimeter.

Subtask 2.2.2. Capture measurement of stable isotopes.

ENEA will measure the 92,94,95 Mo(n,g) cross sections at GELINA and at the n_TOF facility with the high performance total energy detectors developed during the CHANDA project. The impact of the new evaluated nuclear data and their uncertainties will be verified in criticality safety and reactor applications at IRSN as end-user. The data will be part of an evaluation done in WP4 by IRSN.

[SANDA]

26

template WP18-20 v20180201

HORIZON2020

SANDA

SANDA WP2/Task 2.2 definition

Deliverable: 2.3 Report on the 239Pu(n,g), 92,94,95Mo(n,g) cross measurements at n_TOF and GELINA when: month 40 updated to: month 56

Milestones

M.2.11 "Measurement of the 239Pu(n,g) at n_TOF"; M36 M.2.12 "Measurement of the Mo isotopes at GELINA and n_TOF"; M34

Update on the status of the ²³⁹Pu data analysis

A. Sanchez-Caballero¹, V. Alcayne¹, J. Andrzejewski², D. Cano-Ott¹, J. García-Pérez¹, E. Gónzalez-Romero¹, J. Heyse³, T. Martínez¹, E. Mendoza¹, J. Perkowski², J. Plaza del Olmo¹, A. Plompen³, P. Schillebeeckx³, G. Sibbens³

¹CIEMAT, Spain ²University of Lodz, Poland ³JRC-Geel, Belgium

CFRI

MINISTERIO

DE CIENCIA, INNOVACIÓN

GOBIERNO

liemot

Centro de Investigaciones

Energéticas, Medioambientales y Tecnológicas

erc

ARIEL

OF LODZ

IVERSITY

Research Cer

²³⁹Pu production in LWR

Standard fresh nuclear fuel for thermal reactors has a 5% ²³⁵U and a 95% ²³⁸U. ²³⁹Pu is produced during the reactor operation mainly by neutron captures in ²³⁸U + decays of ²³⁹U and ²³⁹Np. The ²³⁹Pu is fissile and thus its neutron induced fission contributes to the power.

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d sf • 6.291; 6.248 sf	Cm 241 32,8 d 5,539 7 472: 431: 132	Cm 242 162,94 d sf a6,113:6,008 st:p 7,44);e ⁺ 7,44);e ⁺ m = 5	Cm 243 29,1 a sf = 5785 5742 c sf p 1275 2281 210, cr 130; cr 620	Cm 244 18,10 a sf v 6305; 6762 st g v (43); e v 15; e, 1,1	Cm 245 8500 a sf c 6.361; 5.304 st.g 7175; 133 r 350; m 2100	Cm 246 4730 a a 5,386; 5,343 sf; g Y (45); e ⁻ o 1,2; or 0,16
Am 236 ? 3,7 m	Am 237 73,0 m 51 909 9	Am 238 1,63 h \$5,54 933,919,561 605 9	Am 239 11,9 h st ^x * 5774 y ^{270,225} 9	Am 240 50,8 h * * * * * * *	Am 241 432,2 a st sty 60, 5,443 sty 60, 25 sty 60, 25 sty 60, 25	Am 242 141 a 16 h 5f 5 1491, 4 P 0.65' 55,201 0.72, 1 17195 1749, 1749, 1 17195 4,2100	Am 243 7370 a st 5,275; 5230 st; 775; 44. e 75; 45 m 0,074	Am 244 26 m 10,1 h 51 p 1.5 p 0.4 9 (1084	Am 245 2,05 h st (241;296) (241;296) (7:9
Pu 235 25,3 m	Pu 236 2,858 a st s;788;5,721 s;Mg 28 y (48;109); er oj 160	Pu 237 45,2 d sf • 5.334 y 60; e ⁻ • 1,2300	Pu 238 87,74 a sf sf,5499; 5,456 st; Sk Mg y (43, 100); eT e 510; or, 17	Pu 239 2,411 · 10 ⁴ a 1,5,157; 5,144 15; y 152 6; m 7270; ny 752	Pu 240 6563 a st «5,168;5,124 st; (45) e; e «290; e; ~ 0,048	Pu 241 14,35 a sf # 0,02: g # 4,480 1143	Pu 242 3,750 · 10 ⁵ a a 4,901; 4,856 d; y 143) e; g e 19; o ₁ < 0,2	Pu 243 4,956 h sf #840 #440 #440 #40	Pu 244 \$,00 - 10 ⁷ a 6,4,588,4,546 \$1,7 0,1,7
Np 234 4,4 d «; β ⁺ γ 1559; 1528; 1602 σ1 * 900	Np 235 396,1 d c; a 5,025; 5,007 y(26; 84); e ⁻ g; σ 160 + ?	Np 236 22,5 h 1.54 10 ⁵ a 4 870.5 4 87 ca 1 962 683. 5 e 104 6 0, m 2700 4 m 2600	Np 237 2,144 - 10 ⁶ a sf = 4,790; 4,774. 7 29; 67; 6 ⁻ = 150; o ₁ 0.020	Np 238 2,117 d β= 1,2 γ 984; 1029; 1026; 924, e ⁻ κ σ ₁ 2100	Np 239 2,355 d β ⁻ 0,4;1.7 γ 106; 278, 228e ⁻ ; 9 σ 32 + 19; σt < 1	Np 240 7,22 m 65 m 9 7 555; 870.9 9 7 555; 8074; 67 601; 97480	Np 241 13,9 m ^{β⁻1,3} γ 175; (133) 9	Np 242 2,2 m 5,5 m 9°-2,7. p° 738, 9×5; 748, 9	Np 243 1,85 m ^{β⁻ γ 288 9}
U 233 1,592 · 10 ⁵ a « 4,824; 4,783 Ne 25: γ (42; 97); e ⁻ « 47; σ(530	U 234 0,0055 2,455 · 10 ⁵ a 0,4775;4729; st Mp 28; Net 1153; 121 c ² ; c ² 95; s ₁ < 0.005	U 235 0,7200 25 = 7,038-10 ⁸ a 4,3881 9 % 195 9 % 195 9 % 195	U 236 120 ns (2,342-107a 4,445; 4,445; 4,445; 4,145; 4,145; 4,145; 4,145; 4,145; 115] 6 ⁻ ; = 5,4	6,25 d β=0,2 γ 60: 208 e ⁻ σ= 100: σt < 0,35	U 238 99,2745 270 rs h33 h33 h33 h33 h33 h33 h33 h33 h33 h3	U 239 2.35 m β 1.2; 1.3 γ 75; 44 σ 22; σ; 15	U 240 14,1 h β ⁻ 0,4 γ 44: (190) e ⁻ m		U 242 16,8 m ^{3⁻} 7 68; 58; 585; 573 m
Pa 232 1,31 d 5 ⁻ 0,3,1,3,;e 9,969:894: 150,;e ⁻ e 460;e;700	Pa 233 27,0 d β ⁺ 0,3:0,6 γ 312:300: 341; 8 ⁺ σ 20 + 19; σ < 0,1	Pa 234 1,17 m 6,70 h (⁵ 2.3., 1,(100); 1,2., 1,(100); 1,2., 1,(100); 1,2., 1,17 m 1,17 m	Fa 235 24,2 m ³⁷ 1,4 7 ^{28 - 659}	Pa 236 9,1 m β= 2.0; 3.1 γ 642; 687; 1763; g βsf ?	Pa 237 8,7 m β ^{-1,4; 2,3} . γ 854; 865; 529; 541	Pa 238 2,3 m β ⁻¹ ,7;2,9 γ 1015;635; 448;680 9			
Th 231 25,5 h ^{β⁻0.3; 0,4} ^{γ 26; 84} e ⁻	Th 232 100 1,405 10 ¹⁹ a 4,013 3,960 sf 9 154 f f 7,37: ey 0,000005	Th 233 22,3 m sf 97,2 y 0,19; y 0,19; y 0,19; y 0,19; y 0,19; y 0,19; y 0,19; y 0,19; y 0,19; y 1,50; et 15	Th 234 24,10 d 5 0,2 7 63:92:93 67: m 0 1,8: of < 0,01	Th 235 7,1 m β 1,4 γ 417; 727; 696	Th 236 37,5 m β ^{-1,0} γ 111; (647; 196)	Th 237 5,0 m β ⁻			

LLFP

5

Experimental technique

Fission tagging: γ -rays in coincidence (fission background) and anticoincidence (capture signal) with the fission detector.

J. Balibrea et al. (The n_TOF Collaboration), PRC 102, 044615, (2020)

$$Y_{\gamma} = \frac{c_{aco,\gamma} - \frac{1 - \epsilon_f^*(E_n)}{\epsilon_f^*(E_n)} c_{tag} - c_{oth,\gamma}}{\epsilon_{\gamma} \phi_N}$$

 c_{tot} = counts in the TAC. c_{tag} = counts in the TAC in coincidence. with the ionisation chambers. c_{oth} = background in the TAC. ϵ_{f}^{*} = fission tagging efficiency. ϵ_{γ} = capture detection efficiency.

MINISTERIC

DE CIENCIA

ΙΝΝΟΥΑCΙÓΝ

6

A new fission chamber

A new multi target fission chamber has been built taking into account the following important characteristics:

- 1. Low mass intercepting the neutron beam, to minimize the background in the TAC due to captures and elastically scattered neutrons.
- 2. Good discrimination between alphas (2 MBq/mg) and fission fragments (5 mm gap).
- 3. Small **pile-up** effects.

A quick reminder

MINISTERIC

DE CIENCIA

ΙΝΝΟΥΑCΙÓΝ

In 2022 we measured the ²³⁹Pu(n,γ) and ²³⁹Pu(n,f) (α-ratio) cross-sections in EAR1. The experiment consisted in two different setups: Fission Chamber configuration (thin samples) and Thick Sample configuration.

- Re-processed of the entire exp. dataset with a refined version of the new Pulse Shape Analysis
 routine was performed at the beginning of 2023 (see ²³⁹Pu presentation at the n_TOF Collaboration
 meeting in May 2023). Improvements in the preliminary results.
- BaF₂ time and energy calibrations were performed and validated with Monte Carlo simulations.
- Pileup/Dead-time analysis performed.

co-funded by the EU H2020 programme

The PFB effect in the final capture yield (1/2)

Comparing the yield* (before dividing by neutron flux) with and without the post-fission background for the TAC event conditions of the analysis. In general, the effect is small, reaching up to \sim 3% change in some resonances.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO

DE CIENCIA

E INNOVACIÓN

GOBIERNO

ESPAÑA

Evaluation of TOF DT model (2/2)

We can validate this Dead Time model using the experimental data.

The prediction of the DT model agrees with observed data even for high neutron energies

MINISTERIO

DE CIENCIA

E INNOVACIÓN

co-funded by the EU H2020 programme

Comparison with evaluations (1 BPD)

y Tecnológicas

GOBIERNO

DE ESPAÑA

Conclusions

- Significant progress in the ²³⁹Pu data analysis have been done in the last months, including a better understanding and characterization of the backgrounds for the capture measurement, determination and validation of dead-time and pile-up models, etc.
- Determination of the neutron flux for the ²³⁹Pu measurement, including the boron concentration correction and the beam intersection factor calculation for a wide neutron energy range.
- These improvements allow us to provide a ²³⁹Pu(n,f) yield that agrees with evaluations within ~2% (integrating in 1 bin per decade) from 0.02 eV to 10 MeV in one single measurement.
- The fission yield is ready to be released (paper in preparation).
- The analysis of 239 Pu(n, γ) data is in progress.

co-funded by the EU H2020 programme

SANDA WP2/Task 2.2 report

Supplying Accurate Nuclear Data for energy and non-energy Applications

^{94,95,96}Mo measurements

Molybdenum is relevant for nuclear astrophysics and nuclear technology and presently known with large uncertainties.

Tc 92 4.4 m ^{β⁺ 4.2} γ 1510; 773; 329; 148	Tc 93 43.5 m 2.7 h 1y 392 (************************************	Tc 94 53 m 4.9 h \$\vec{\beta}\$ + 0.8 \$\vec{\beta}\$ + 2.5 \$\vec{\beta}\$ + 371 \$\vec{\beta}\$ + 371	Tc 95 60 d 20 h ε; β* γ204; γ204; ε 582; γ766; γ1074 1074	Tc 96 52 m 4.3 d ¹ γ (34) e e ⁻ ro β ⁺ γ 778; 850; 1200 813	Tc 97 92.2 d 4.0 · 10 ⁵ a	Tc 98 4.2 \cdot 10 ⁶ a β^{-} 0.4 γ 745; 652 σ 0.9 + ?	Tc 99 6.0 h 2.1· 10 ⁵ a μγ141 θ ⁻ β ⁻ 0.3 γ(90) γ(90) γ(322) γ(90)	Tc 100 15.8 s β 3.4 ^ε γ 540; 591	Tc 101 14.2 m	Tc 102 4.3 m 5.3 s β ^{-1.6;} 3.2. γ 475; β ^{-4.2} 628 γ 475
Mo 91 65 s 15.5 m ^{1γ 653} ^{β⁺ 2.5; 4.0⁽¹⁾ γ 1508; γ 1687) 1208; m g}	Mo 92 14.77 σ2E-7 + 0.06	MO 93 6.9 h 3.5 · ¹ γ 1477; 10 ³ a 685; 263; ε γ (950) ε 9 m	Mo 94 9.23 σ 0.02	Mo 95 15.90 σ 13.4 σ _{n, α} 0.000030	Mo 96 16.68 or 0.5	Mo 97 9.56 ^{σ 2.5} σ _{n, α} 4E-7	Мо 98 24.19 10 0.14	Mo 99 66.0 h β ⁻ 1.2 γ740; 182; 778 m; g	Mo 100 9.67 1.15 · 10 ¹⁹ a	Mo 101 14.6 m ^{β⁻ 0.8; 2.6 γ 192; 591; 1013; 506}
Nb 90 18.8 s 14.6 h β ⁺ 1.5 γ 1129; 2319; e ⁻ 1129; 2319; 141	Nb 91 60.9 d 680 a ^{by} (105) e ⁻ ε; β ⁺ γ 1205 β ⁺	Nb 92 10.15 d 3.6 · 10 ⁷ a ⁶ ⁶ ⁶ ⁷ 561; 934	Nb 93 16.13 a 100 ^{Iy} (31) e ⁻ 0.86 + 0.29	Nb 94 6.26 m 2 · 10 ⁴ a β ⁻ 0.5 γ 871; e ⁻ 703 β ⁻ σ 0.6 + γ (871) 14.4	Nb 95 86.6 h 34.97 d ¹ / ₂ 236 β ⁻ 0.2; θ ⁻ 0.9 γ 204, γ 766 γ 204, σ < 7	Nb 96 23.4 h ^{β0.7} _γ 778; 569; 1091	Nb 97 53 s 74 m Ιγ 743 β ^{-1.3} γ 658	Nb 98 51 m 2.9 s β ⁻ 2.0; 2.9 γ 787; β ⁻ 4.6 723; γ 787; 1169 1024	Nb 99 2.6 m 15 s β=3.2 γ γ 86; 254; β=3.1 2854 γ iy 365 ? 98	Nb 100 3.1 s 1.5 s β ⁻ 6.2 γ 535: γ 535; 600: 528; 1280 159
Zr 89 4.16 m 78.4 h hy 588 6 \$+0.9; 2.4 y 1507; g m	Zr 90 51.45 σ~0.014	Zr 91 11.22 σ 1.2	Zr 92 17.15 σ0.2	Zr 93 1.5 · 10 ⁶ a ^{β⁻ 0.06 ^m σ <4}	Zr 94 17.38 σ0.049	Zr 95 64.0 d ^{β⁻ 0.4; 1.1} γ757; 724 9	Zr 96 2.80 3.9 · 10 ¹⁹ a	Zr 97 16.8 h ^{β⁻1.9} ^{γ 508; 1148; 355} m	Zr 98 30.7 s ^{β⁻ 2.3} ^{no γ} 9	Zr 99 2.1 s β ^{-3.5; 3.6} γ 469; 546; 594 g; m

European Commission

SANDA

Enriched pellets preparation

To avoid the background coming from aluminum capsule three pressed pellets were prepared using enriched powder:

- Pellets prepared at JRC-Geel;
- Self sustaining pellets of ~ 2g;
- Additional ^{nat}Mo samples prepared using powder with different grain sizes;

HORIZON2020

Mo pellet samples

Atomic %	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	¹⁰⁰ Mo
⁹⁴ Mo	0,63%	98,97%	0,36%	0,01%	0,01%	0,01%	0,01%
⁹⁵ Mo	0,31%	0,69%	95,40%	2,24%	0,51%	0,65%	0,20%
⁹⁶ Mo	0,28%	0,24%	1,01%	95,90%	1,00%	1,32%	0,25%

lsotope	Mass (mg)	Areal density (atoms/b)
⁹⁴ Mo	1,952.6	3,9592E-03
⁹⁵ Mo	1,974.5	3,9558E-03
⁹⁶ Mo	1,917.5	3,8064E-03
^{nat} Mo-5 μm	2,014.0	4,0059E-03
^{nat} Mo-350 μm	1,989.0	3,9584E-03

European Commission

Supplying Accurate Nuclear Data for energy and non-energy Applications

Measurements

EAR2_2021	EAR1_2022	EAR2_2022
1.7 10 ¹⁸ protons	6.0 10 ¹⁸ protons	1.7 10 ¹⁸ protons
3 B6D6, 1 L6D6, 1 STED	4 C6D6	8 STED, 2 L6D6, 1 DSTI
Powder sample in aluminum canning	Pressed pellets in plastic bags	Pressed pellets in plastic bags

+ additional transmission measurement with enriched pellets at 10m station of GELINA

+ transmission measurements with natural samples at 50m station of GELINA

upplying Accurate Nuclear Data for nergy and non-energy Applications

- Resonance parameters have been adjusted in all the resolved resonance region (<21 keV);
- Extended resolved resonance region up to 75 keV
- Example of fit showed here compared to the calculation performed with JENDL5 parameters
- Good agreement between transmission and capture data with enriched samples

ÍNFŃ

- Extended resolved resonance region up to 75 keV using data from capture measurements,
- New resonances not present in literature.

ÍNFŃ

J	L	Energy (eV)	Unc_E	W_Capture (meV)	Unc_Cap	Width_ n (meV)	Unc_n
-0.5	1	108.7365	2.29E-03	158.837	4.69049	0.180556	1.22E-03
-1.5	1	1051.963	1.48E-02	237.578	25.6533	2.35311	3.02E-02
0.5	0	1542.773	1.16E-02	124.952	0.568967	1673.86	8.59281
-1.5	1	1657.322	2.08E-02	169.781	30.3225	4.65519	6.62E-02
-1.5	1	2175.49	1.01E-02	159.592	1.06928	340.652	4.81211
				•			
-1.5	1	9576.481	0.109357	122.857	2.46143	673.324	68.231
0.5	0	9689.416	0.184379	98.0503	2.40078	2383.27	162.983

1

9797.066

0.132802

-1.5

95.4524

7.68889

230.418

SANDA Supplying Accurate Nuclear Data for energy and non-energy Applications

44.3515

Capture kernels for ⁹⁴Mo

- The preliminary kernels obtained with ٠ SAMMY were compared to the ones in literature (Weigmann and Musgrove capture measurements);
- Main measurements used in libraries; ٠
- Systematic deviation of around 20% ٠ observed

Presentation and article

- Journal articles
 - *R. Mucciola et al., Evaluation of resonance parameters for neutron interactions with* molybdenum, NIMB **531** (2022) 100
 - R. Mucciola et al., Neutron capture and total cross-section measurements on ^{94,95,96}Mo at n TOF and GELINA, EPJ Web of Conferences 284, 01031 (2023)
- Contributions to seminar and conferences
 - Nuclei in the cosmos XVII, 17-22 September 2023, Daejeon (Korea). Poster presentation
 - GIANTS XI, 20-21 October 2022, Caserta (Italy). Invited talk
 - ND 2022, 24-29 July 2022, Sacramento (USA). Oral presentation
 - 13th Torino Workshop on AGB stars, 19-24 June 2022, Perugia (Italy). Oral presentation

Overall status of the 94,95,96 Mo measurements

	Transmission measurement	Capture measurement	Transmission data analysis	Capture data analysis
Mo-94	Performed at 10 m station GELINA	Performed at EAR1 and EAR2 n_TOF	Preliminary resonance parameters	EAR1 preliminary resonance parameters, EAR2 analysis ongoing
Mo-95	Performed at 10 m station GELINA	Performed at EAR1 and EAR2 n_TOF	Transmission spectra obtained	EAR1 yield obtained, EAR2 analysis ongoing
Mo-96	Performed at 10 m station GELINA	Performed at EAR1 and EAR2 n_TOF	Transmission spectra obtained	EAR1 yield obtained, EAR2 analysis ongoing

SANDA WP2/Task 2.2 report summary 1/2

 239 Pu(n, γ) neutron capture cross section and α ratio

proposal for measurement at n_TOF submitted and approved by the CERN Research Board (December 2020)

sample preparation procedure agreed between CERN and JRC-Geel

The ionization chamber that is used for these measurements will be tested at JRC-Geel during 2021

Measurements to be performed at n_TOF during 2022

SANDA WP2/Task 2.2 report summary 1/2

 239 Pu(n, γ) neutron capture cross section and α ratio

proposal for measurement at n_TOF submitted and approved by the CERN Research Board (December 2020)

sample preparation procedure agreed between CERN and JRC-Geel

The ionization chamber that is used for these measurements will be tested at JRC-Geel during 2021

Measurements performed at n_TOF during 2022

SANDA WP2/Task 2.2 report summary 2/2

 94,95,96 Mo(n, γ) neutron capture and total cross section measurements

proposal for measurement at n_TOF submitted and approved by the CERN Research Board (December 2020)

sample orders issued to Neonest AB, Sweden. Expected delivery Q1-2021

Total cross section measurements to be performed at JRC-Geel (GELINA) during 2021

Measurements to be performed at n_TOF during 2022

SANDA WP2/Task 2.2 report summary 2/2

 94,95,96 Mo(n, γ) neutron capture and total cross section measurements

proposal for measurement at n_TOF submitted and approved by the CERN Research Board (December 2020)

sample orders issued to Neonest AB, Sweden. Expected delivery Q1-2021

Total cross section measurements performed at JRC-Geel (GELINA) during 2021

Measurements performed at n_TOF during 2022

The END

9 February 2021, SANDA meeting

SANDA Supplying Accurate Nuclear Data for energy and non-energy Applications

Liberté Égalité Fraternité

SANDA GENERAL MEETING PROGRESS OF IRSN ON WP2&4 WORK PACKAGE 9-11 FEBRUARY 2021

IRSN PSN-RES/SNC/LN Pôle Sûreté Nucléaire Service de Neutronique et des risques de Criticité Laboratoire de Neutronique

N. LECLAIRE L. LEAL

MEMBRE DE ETSOI

Working package WP2 & 4 – Measurement and assessment of nuclear data

ASSESSMENT OF MOLYBDENUM NUCLEAR DATA

<u>Target</u>: produce Mo evaluation with covariance for RP and cross sections

- JEFF-33, ENDF/B-VIII.0: covariance for cross sections BUT <u>no covariance</u> for RP
- JENDL-4.0: no covariance for RP and cross sections

Resonance parameters retrieved from JEFF-3.1.1, JEFF-3.3, JENDL-4.0, ENDF/B-VII.1 and ENDF/B-VIII.0 evaluations

- Identification of available differential measurements in EXFOR
 - Lack of data for ⁹⁵Mo

Use of JENDL-4.0 resonance parameters to initiate the evaluation process

Correspondence between spin groups and channel spins addressed

Transmission and capture measurements of ^{nat}Mo at J-PARC (Japan) on various samples

- ANNRI experimental device
- 0.1, 0.5, 2 mm thick for capture and 0.5, 5 mm thick for transmission

lsotope	Composition (%)	Thermal Cross Section (barns)	Resonance Integral (barns)
⁹² Mo	14.84	0.08±0.02	0.83
⁹⁴ Mo	9.25	0.34±0.02	1.12
⁹⁵ Mo	15.92	13.4 <u>+</u> 0.3	118 <u>+</u> 7
⁹⁶ Mo	16.68	0.5±0.3	17±3
⁹⁷ Mo	9.55	2.2±0.2	14.4±3.0
⁹⁸ Mo	24.13	0.130±0.006	6.7±0.3
¹⁰⁰ Mo	9.63	0.199±0.002	3.76±0.15

Library	Lower limit RR (eV)	Upper limit RR (eV)	Lower limit URR (eV)	Upper limit URR (eV)
JEFF-3.3	0	2141.2	0	206269
ENDF/B-VIII.0	0	2141.2	0	206269
JENDL-4.0	0	2000.0	0	400000

Working package WP2 & 4 – Measurement and assessment of nuclear data

[ASSESSMENT OF MOLYBDENUM NUCLEAR DATA

- Fit of experimental data with SAMMY code (R-matrix)
 - Preliminary evaluation: sequential fit
 - Resolved resonance description
 - –Use of $\chi 2$ as figure of merit
 - -Generation of covariance matrix
 - -Updated RP and RP covariance data at each step
 - Use of 0.5 mm sample in 0-600 eV
 - Low data resolution above 350 eV

n_TOF and GELINA measurements of enriched Mo are planned/underway.

Additional data: a) RPI transmission data for isotopes (⁹⁵Mo, ⁹⁶Mo, ⁹⁸Mo, ¹⁰⁰Mo); b) Transmission and capture data for ⁹⁵Mo from LANL

