
D2.5 Report on the measurements of the branching ratio for ²⁰⁹Bi, ²⁰⁸Pb(n,tot) and ²³⁸U(n,inel) cross sections at GELINA

Measurements for ²⁰⁹Bi (collaboration SCK-JRC)

- Branching ratio experiment at J-PARC (only calibrations and ROOT data)
- Additional measurements at GELINA
- Finished report on transmission data. Ready for EXFOR

Results of time-of-flight transmission measurements for 209Bi at a 50 m station of GELINA JRC136373

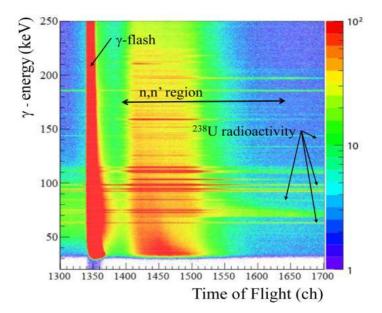
· Report includes an evaluation overview

• New project on ²⁰⁶Bi capture at n_TOF leaded by IFIC Valencia

(invited to collaborate in J-PARC data)

Transmission on Pb isotopes (collaboration SCK-JRC-CIEMAT)

- Transmission measurements on ²⁰⁶Pb and ^{nat}Pb carried out in 2022 and 2023.
- ²⁰⁶Pb analysis performed by CIEMAT PhD, almost complete.
- ^{nat}Pb measurements instead of ²⁰⁸Pb due to lack of suitable sample.



²³⁸U(n,inel) cross sections at GELINA

- Work already published
- Measurement of 238U(n, n'γ) cross section data and their impact on reaction models
- M. Kerveno, M. Dupuis, et al. Physical Review C 104, 044605 (2021)
- https://dx.doi.org/10.1103/PhysRevC.104.044605

TABLE II. Selection of identified γ energies [38] in the ²³⁸U energy spectra stemming from the ²³⁸U(n, n') reactions. The possible contamination of the peak in the spectra is mentioned in the three last columns. Levels are labeled as J_k^{Π} where J is the level total angular momentum, $\Pi = +/-$ its parity, and k counts the levels of the same J^{Π} by increasing excitation energy.

E_{γ} (keV)	Initial state		Final state				Peak pollution		
	E (keV)	J_k^{Π}	E (keV)	J_k^{Π}	I_{γ}	γ multipolarity	Process	E_{γ} (keV)	Elevel (keV)
44.915 (13)	44.916 (13)	2_{1}^{+}	0	0_{1}^{+}	100	E2			
103.50 (4)	148.38 (3)	4_{1}^{+}	44.916 (13)	2^{+}_{1}	100	<i>E</i> 2	$X K\beta 3$ $^{238}U(n, 2n)^{237}U$	104.6 103.68	159.962
159.018 (16)	307.18 (8)	61+	148.38 (3)	41+	100	E2	${}^{63}Cu(n, \gamma){}^{64}Cu$	159.28	159.28
210.6 (4)	518.1 (3)	8+	307.18 (8)	6+	100	E2			
218.1 (3)	950.12 (20)	$2\frac{1}{1}$	731.93 (3)	31	53 (6)	?			
251.2 (7)	930.55 (9)	1-	680.11 (4)	$1\frac{1}{1}$	13.1 (14)	? ?	$^{238}U(n, \gamma)^{239}U$	250.06	292.6
257.8 (4)	775.9 (4)	10+	518.1 (3)	8+	100	E2			
270.1 (4)	950.12 (20)	21	680.11 (4)	1-	48 (8)	?			
519.46 (8)	826.64 (11)	51	307.18 (8)	6_{1}^{+}	50 (3)	E1			
583.55 (3)	731.93 (3)	$3\frac{1}{1}$	148.38 (3)	4_{1}^{+}	81.4 (16)	<i>E</i> 1	208 Pb (n, n') 208 Pb 63 Cu (n, n') 63 Cu	583.19 584.82	3500 1547
635.3 (3)	680.11 (4)	1^{-}_{1}	44,916 (13)	2^{+}_{1}	100.0 (20)	E1			
678.3 (3)	826.64 (11)	5	148.38 (3)	4+	100 (6)	E1			
680.2 (5)	680.11 (4)	1-	0	0_{1}^{+}	79 (4)	E1			
686.99 (3)	731.93 (3)	3-	44.916 (13)	2_{1}^{+}	100 (2)	E1			
849.1 (4)	997.58 (7)	3-	148.38 (3)	4+	100 (3)	E1	238 U(n, 2n) 237 U	849.45 (13)	905.73 (7)
885.46 (10)	930.55 (9)	12	44.916 (13)	2+	100 (4)	E1			
905.5 (5)	950.12 (20)	2	44.916 (13)	2^{+}_{1}	100 (6)	E1			
952.65 (7)	997.58 (7)	3-	44.916 (13)	2+	56.8 (13)	E1			

Conclusions

• Deliverable for D2.5 in preparation and will be in time (March 2024)

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

