# SANDA Project Subtask 5.2.1: correlations in integral experiments

V. Bécares (CIEMAT), N. García-Herranz (UPM), O. Cabellos (UPM), I. Kodeli (UKAEA), G. Zerovnik (JSI), D. Bernard (CEA)



SANDA pending deliverables meeting

# Subtask 5.2.1: correlations in integral experiments

#### • SANDA subtask 5.2.1: Assessing correlations in integral experiments

#### Subtask 5.2.1: Assessing correlations in integral experiments

While a considerable effort has been given to nuclear data covariances in recent years, much less attention has been paid to correlations in integral experiments used in validation, adjustment, and assimilation studies. In point of fact, correlation coefficient data for criticality cases are available for only 93 integral experiments of the DICE database associated with the ICSBEP Handbook.

Although this project will not attempt to produce adjusted nuclear data libraries nor to assimilate validation information, CIEMAT, JSI, CEA/DEN, and UPM will share their best experts' opinions on the "missing correlations in integral experiments" problem, with the goal of assessing its impact on nuclear data validation studies. Simulations will be made to estimate the correlations between the experimental uncertainties of integral experiments and quantify their impact on some reactor concept.

#### • Work already performed:

- CIEMAT&UPM: literature review (next slides)
- UKAEA & JSI: correlations in shielding benchmarks (ASPIS-Fe88, PCA-REPLICA) SANDA GM
- CEA: correlations in configurations of the EOLE reactor (CAMELEON program) | March 2022
- Simulations?

#### • **D5.6** *Report on correlations between integral experiments* (<u>CIEMAT</u>, JSI, CEA, UPM).

### **Proposed structure for D5.6**

- Introduction 1
- Origin of experimental correlations 2.
- 3. Impact of experimental correlations
  - 2.1. Criticality safety
  - 2.2. Reactor physics
  - 2.3. Radiation shielding
  - 2.4. Nuclear data
- Status of existing correlations 4.
- 5. Methodologies to produce correlations
  - 4.1 Expert judgement/ deterministic
  - 4.2 Monte Carlo
- 6. Applications

## Status of existing correlations (I)

#### • Cuantitavive correlations in DICE for 93 cases (out of 5121 cases in ICSBEP)

-55 cases correspond to four sets of HEU-SOL-THERM benchmarks.

HST HST



#### IPPE: 21 (HST019/025/027/028/029/030/035)

T. Ivanova et al., Influence of the Correlations of Experimental Uncertainties on Criticality Prediction. NSE 145 (2003) 97–104



ORNL: 14 (HST009/ /010/011/012/043) + 10 (HST013/032/042)



006

001 001 001 001 001 001 001

001 001

CIEMAT

HST HST HST

003 004 005

001

001 002

## Status of existing correlations (II)

#### ZPR & ZPPR @ ANL (33 cases)



G. Palmiotti *et al., Combined Use of Integral Experiments and Covariance Data*. NDS 118 (2014) 596-636.

#### VNIIEF (3 cases)

| HMF        | HMF        | HMF        | ICSBEP no. | Facility/core                                         |  |  |  |  |  |  |
|------------|------------|------------|------------|-------------------------------------------------------|--|--|--|--|--|--|
| 018<br>001 | 020<br>001 | 031<br>001 | HMF018     | CTF, bare U235 (90%) sphere                           |  |  |  |  |  |  |
| 1000       | 460        | 320        |            | CTF. U235 (90%) sphere, PE                            |  |  |  |  |  |  |
| 460        | 1000       | 460        | HMF020     | reflector                                             |  |  |  |  |  |  |
| 320        | 460        | 1000       |            |                                                       |  |  |  |  |  |  |
|            |            |            | HMF031     | CTF, U235 (90%) sphere, PE central area and reflector |  |  |  |  |  |  |

#### VNIITF (2 cases)

|            | HMF  | HMF  |
|------------|------|------|
|            | 008  | 011  |
|            | 001  | 001  |
| HMF008-001 | 1000 | 210  |
| HMF011-001 | 210  | 1000 |
|            |      |      |

| ICSBEP no. | Facility/core                     |
|------------|-----------------------------------|
| HMF008     | FKBN, HEU sphere                  |
| HMF011     | FKBN, HEU sphere and PE reflector |
|            |                                   |

| ICSBEP no. | Facility/core    | No.<br>Cases |
|------------|------------------|--------------|
| HMF055     | ZPR-3/23         | 1            |
| HMF060     | ZPR-9/4          | 1            |
| HMF061     | ZPR-21F          | 1            |
| HMF067     | ZPR-9/5 & 6      | 2            |
| HMF070     | ZPR-9/7, 8 & 9   | 3            |
| HMF075     | ZPPR-20/C        | 1            |
| HMI001     | ZPR-9/34         | 1            |
| HMM012     | ZPPR-20/D        | 1            |
| ICF004     | ZPR-3/12         | 1            |
| ICI005     | ZPR-6/6A         | 1            |
| IMF010     | ZPR-6/9          | 1            |
| IMF012     | ZPR-3/41         | 1            |
| IMF013     | ZPR-9/1          | 1            |
| IMF014     | ZPR-9/2&3        | 2            |
| IMF015     | ZPR-3/6F         | 1            |
| IMF016     | ZPR-3/11         | 1            |
| MCF001     | ZPR-6/7          | 1            |
| MCF002     | ZPR-6/7 (Pu-240) | 1            |
| MCF003     | ZPR-3/48         | 2            |
| MCF004     | ZPR-3/56         | 1            |
| MMF011     | ZPPR-21          | 4            |
| PMF033     | ZPPR-21A         | 1            |
| PMI002     | ZPR-6/10         | 1            |
| SHMF001    | ZPPR-20/E        | 2            |

HMF018-001

HMF020-001

HMF031-001

#### • Expert judgement / deterministic methodologies

| Ivanova <i>et al.</i> (2003) Intl. Conf. Nuc. Crit.<br>Ivanova <i>et al.</i> (2003) NSE 145 97–104 | Methodology described. Correlations in $k_{eff}$ unc. for 77 HEU-SOL-THERM cases: 34 from IPPE, 10 from Rocky Flats, 29 from ORNL and 4 from LANL. No numerical information.       |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ivanova <i>et al.</i> (2009) ANE 36 305–309                                                        | Correlations in $k_{eff}$ unc. for 10 cases from IPPE's BFS-99, 99 and 101 (MMCF003/004, MMCM001)                                                                                  |
| Dos Santos (2013) PhD Thesis<br>Dos Santos <i>et al.</i> (2013) ANNIMA2013                         | Methodology described. Correlations in $k_{eff}$ unc. for 6 systems, including 3 cases from ICSBEP (ZPR-10A(?) and MCT001).                                                        |
| Ivanova <i>et al.</i> (2014) NSE 178 1-15                                                          | Correlations in $k_{eff}$ unc. for some fast benchmarks from IRPhE (ZEBRA, ZPR, SNEAK, NEA-NSC-WPEC-SG33) and thermal benchmarks for ICSBEP (LCT007-039, UACSA Benchmark Phase IV) |
| NEA/NSC/WPEC/DOC(2013)445<br>Salvatores <i>et al.</i> (2014) NDS 118 38-71                         | Correlations in $k_{eff}$ unc. for ZPR-6/7 and ZPPR-9, correlations in spectral indexes in some other systems.                                                                     |
| Palmiotti <i>et al.</i> (2014) NDS 118 596-636                                                     | Correlations in $k_{eff}$ unc. for 33 ZPR benchmark experiments. Results of US DOE Nuclear Data Adjustment Project.                                                                |
| Jeong <i>et al.</i> (2017) M&C2017                                                                 | Correlation matrices for some LEU-COMP-THERM and HEU-COMP-FAST cases. No numerical information.                                                                                    |

#### • Monte Carlo methodologies

| Buss <i>et al.</i> (2010) PHYSOR2010                                             | Correlations in $k_{eff}$ unc. for 97 LEU-COMP-THERM and MIX-COMP-THERM cases. MC code used: SCALE 6. No numerical information.                                         |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stuke <i>et al.</i> (2016) GRS-440<br>Kilger <i>et al.</i> (2016) ANE 96 354-362 | Correlations in $k_{eff}$ unc. for 9 LCT cases (LCT006 and LCT035/062, JAEA's TCA) and 43 PST cases (PST003/006/020/21) (no numerical information). MC code used: KENO. |
| Marshall (2017) PhD. Thesis                                                      | Correlations in $k_{eff}$ unc. for a series of cases of LCT007/039 (CEA Valduc), LCT042 (PNL) and HST001 (Rocky Flats) benchmarks. MC code used: KENO                   |
| Sommer & Stuke (2021) ANE 157 108209                                             | S2Cor methodology for efficient MC sampling to calculate correlatons.<br>Applied to some LCT007 (CEA Valduc) cases. MC code used: KENO                                  |

#### Comprehensive documents

| Stuke [Ed.] (2016) GRS-414           | Results of EG UACSA Benchmark Phase IV. Intercomparison of             |
|--------------------------------------|------------------------------------------------------------------------|
| Stuke <i>et al.</i> (2019) ICNC 2019 | methodologies for generating correlation matrices in LCT-007 (4 cases) |
| NEA/NSC/R(2021)1                     | and LCT-039 (17 cases) (Apparatus-B @ CEA Valduc)                      |

# Missing correlations (I)

#### IPPE: 30 additional benchmarks in three facilities with correlated uncertainties

- BRR-1-1: 4 (PMF012 & rel.)
- KBR & BFS: 26 (experimental correlations?)

|         | PMM | HMF | HMI | HMI | HMT | HMM | HCI | IMF | ICF | ICI | ICI | ICT | MMF | MMF | MMCF | MMCF | MMCF | MMCF | MMCM | PMI | PMT |   |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|-----|-----|---|
|         | 001 | 068 | 005 | 008 | 005 | 005 | 005 | 017 | 002 | 001 | 002 | 005 | 006 | 015 | 001  | 002  | 003  | 004  | 001  | 001 | 001 | 1 |
|         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |     |     | - |
| PMM001  | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | (+) | (+) |   |
| HMF068  | +   | (+) | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| HMI005  | +   | +   | (+) | +   | (+) | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| HMI008  | +   | (+) | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| HMT005  | +   | +   | (+) | +   | (+) | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| HMM005  | +   | +   | (+) | +   | (+) | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| HCI005  | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| IMF017  | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | (+) | +   | +   | (+) | (+)  | +    | +    | +    | +    | +   | +   |   |
| ICF002  | +   | +   | +   | +   | +   | +   | +   | +   | (+) | (+) | +   | (+) | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| ICI001  | +   | +   | +   | +   | +   | +   | +   | +   | (+) | (+) | +   | (+) | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| ICI002  | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | (+) | +   | +   | (+) | (+)  | +    | +    | +    | +    | +   | +   |   |
| ICT005  | +   | +   | +   | +   | +   | +   | +   | +   | (+) | (+) | +   | (+) | +   | +   | +    | +    | +    | +    | +    | +   | +   |   |
| MMF006  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +    | +    | +    | +    | +    | +   | +   |   |
| MMF015  | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | (+) | +   | +   | (+) | (+)  | +    | +    | +    | +    | +   | +   |   |
| MMCF001 | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | (+) | +   | +   | (+) | (+)  | +    | +    | +    | +    | +   | +   |   |
| MMCF002 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | (+)  | +    | +    | +    | +   | +   |   |
| MMCF003 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | (+)  | +    | (+)  | +   | +   |   |
| MMCF004 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | (+)  | +    | +   | +   |   |
| MMCM001 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | (+)  | +    | (+)  | +   | +   |   |
| PMI001  | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | (+) | (+) |   |
| PMT001  | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    | +    | +    | +    | (+) | (+) |   |
|         |     |     |     |     |     |     |     |     |     |     |     |     |     |     |      |      |      |      |      |     |     | - |

| T. Ivanova <i>et al., Towards validation of criticality calculations</i> |
|--------------------------------------------------------------------------|
| for systems with MOX powders. ANE 36 (2009) 305-309                      |

|         | Facility/core                           | Year      |  |  |  |
|---------|-----------------------------------------|-----------|--|--|--|
| HCI005  | KBR-7/9/10/15/16                        | 1970-90   |  |  |  |
| ICF002  | KBR-18                                  |           |  |  |  |
| ICI001  | KBR-19/20                               |           |  |  |  |
| ICT005  | KBR-21                                  | 1990-94   |  |  |  |
| HMF068  | KBR-22                                  |           |  |  |  |
| HMI008  | KBR-23                                  |           |  |  |  |
| MMCF001 | BFS-31/42                               |           |  |  |  |
| ICI002  | BFS-33                                  | 4077 70   |  |  |  |
| IMF017  | BFS-35                                  | 1977-79   |  |  |  |
| MMF015  | BFS-38                                  |           |  |  |  |
| MMCF002 | BFS-49                                  | 1985      |  |  |  |
| MMF006  | BFS-61                                  |           |  |  |  |
| НММ005  | BFS-79-1/2                              |           |  |  |  |
| НМТ005  | BFS-79-3                                | 1000      |  |  |  |
| HMI005  | BFS-79-4/5                              | 1999      |  |  |  |
| PMI001  | BFS-81-1/2                              |           |  |  |  |
| PMM001  | BFS-81-3                                |           |  |  |  |
| PMT001  | BFS-81-4/5                              | 1999-2000 |  |  |  |
| MMCF003 | BFS-97-1/2, BFS-101-1                   |           |  |  |  |
| MMCF004 | BFS-97-3/4, BFS-99-<br>1/2, BFS-101-2/3 | 2004-05   |  |  |  |
| MMCM001 | BFS-97-5/6/7                            | 2008-09   |  |  |  |



# Missing correlations (II)

#### CTF @ VNIIEF (34 bench. in 6 groups)

- 1. Pu(98%)/U(90%): 2 (MMF009-010)
- 2. U(90%): 10 (HMF018 & rel.)
- 3. Pu(89%): 5 (PMF029 & rel.)
- 4. U(36%): 6 (IMF003 & rel.)
- 5. Pu(98%): 9 (PMF022 & rel.)
- 6. Pu(88%): 2 (PMF027-028)

#### FKBN @ VNIITF (54 bench. in 4 groups)

- 1. U/Pu, cyl. conf.: 40 (HMF015 & rel.)
- 2. HEU, sph. conf.: 8 (HMF008 & rel.)
- 3. Pu, cyl. & sph. confs.: 3 (PMF019-021)
- 4. Pu/HEU, sph. conf.: 3 (MMF003-005)

# Correlations for a few cases included in DICE.

# Missing correlations (III)



#### Kurchatkov inst. (30 bench. in 6 groups)

- 1. SF-9: 8 (LCT053 & rel.)
- 2. Tank facility: 5 (LCT022-025, LCT032)
- 3. Tank facility: 4 (HCT011-014)

- 4. Narciss-M: 3 (HCM003-004, HCT009)
- 5. Tank facility: 6 (HCT003-008)
- 6. Tank facility: 4 (LCT019-021, LCT031)

# Missing correlations (IV)



JAEA (29 bench. in 3 groups)

- 1. TCA: 5 (LCT062 & rel.)
- 2. STACY: 22 (LST004 & rel.)

3. STACY: 2 (LST012-013)

|         | LCT | SLCT | SLCT |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
|         | 043 | 044 | 046 | 054 | 058 | 067 | 077 | 082 | 083 | 084 | 088 | 089 | 090 | 091 | 092 | 103 | 002  | 003  |
| LCT043  | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT044  | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT046  | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT054  | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT058  | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT067  | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT077  | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT082  | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT083  | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT084  | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +   | +    | +    |
| LCT088  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +   | +    | +    |
| LCT089  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +   | +    | +    |
| LCT090  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +   | +    | +    |
| LCT091  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +   | +    | +    |
| LCT092  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +   | +    | +    |
| LCT103  | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+) | +    | +    |
| SLCT002 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | (+)  | +    |
| SLCT003 | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +   | +    | (+)  |

#### IPEN/MB-01 (18 bench.)

- DICE contains cuantitive data for correlations in  $k_{eff}$  experimental uncertainty for 93 benchmark cases:
  - 55 HST cases from IPPE, ORNL and Rocky Flats.
  - 33 cases from ZPR@ANL.
  - 3 cases from VNIIEF and 2 from VNIITE.
- Correlation information for some more systems is available in the literature (obtained by different institutions with different methodologies):
  - 10 MMC/MMCM cases from BFS @IPPE (Ivanova et al. ANE 36 (2009) 305-309).
  - 21 LCT cases from Apparatus-B @CEA Valduc (EG UACSA Benchmark Phase IV).
  - 9 LCT cases from TCA @JAEA (GRS-440).
  - 7 LCT cases from Critical Mass Lab @PNL (W. J. Marshall's Ph. D. Thesis).
- UKAEA & JSI: correlations in shielding benchmarks (ASPIS-Fe88, PCA-REPLICA)
- CEA: correlations in configurations of the EOLE reactor (CAMELEON program)
- Several sets of benchmark experiments with correlated experimental uncertainties in  $k_{eff}$  can be identified from DICE. Simulations?



**C/E PCA Replica** 

#### UKAEA & IJS activities (I)

ASPIS IRON-88 and PCA REPLICA shielding benchmarks

#### **Correlation coefficients among measured reaction rates**

 Au, Rh, In, S and Al activation foils installed in 7.4-mm air gaps.

**Sensitivity: PCA Replica** 



(Not to scale)

# ASPIS Fe88 Sens

## ASPIS-Fe88 covariance matrix for measured RR

Assuming totally correlated power normalisation uncertainty

| Det. |      |       |      | Au   |      | R    | h    | lr.  | n i  |      | S    |      | AI   |
|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|
|      | Pos. | (cm)  | 26   | 46   | 62   | 26   | 62   | 26   | 46   | 26   | 52   | 62   | 26   |
|      | (cm) | 1σ(%) | 4,2  | 4,2  | 4,2  | 5,1  | 5,1  | 4,5  | 4,7  | 6,5  | 6,5  | 8,6  | 4,7  |
|      | 26   | 4,2   | 1    | 0,95 | 0,95 | 0,75 | 0,75 | 0,85 | 0,81 | 0,59 | 0,59 | 0,44 | 0,81 |
| Au   | 46   | 4,2   | 0,95 | 1    | 0,95 | 0,75 | 0,75 | 0,85 | 0,81 | 0,59 | 0,59 | 0,44 | 0,81 |
|      | 62   | 4,2   | 0,95 | 0,95 | 1    | 0,75 | 0,75 | 0,85 | 0,81 | 0,59 | 0,59 | 0,44 | 0,81 |
| Dh   | 26   | 5,1   | 0,75 | 0,75 | 0,75 | 1    | 0,96 | 0,7  | 0,67 | 0,48 | 0,48 | 0,37 | 0,67 |
| RII  | 62   | 5,1   | 0,75 | 0,75 | 0,75 | 0,96 | 1    | 0,7  | 0,67 | 0,48 | 0,48 | 0,37 | 0,67 |
|      | 26   | 4,5   | 0,85 | 0,85 | 0,85 | 0,7  | 0,7  | 1    | 0,93 | 0,55 | 0,55 | 0,41 | 0,76 |
| IN   | 46   | 4,7   | 0,81 | 0,81 | 0,81 | 0,67 | 0,67 | 0,93 | 1    | 0,52 | 0,52 | 0,4  | 0,72 |
|      | 26   | 6,5   | 0,59 | 0,59 | 0,59 | 0,48 | 0,48 | 0,55 | 0,52 | 1    | 0,97 | 0,73 | 0,52 |
| S    | 52   | 6,5   | 0,59 | 0,59 | 0,59 | 0,48 | 0,48 | 0,55 | 0,52 | 0,97 | 1    | 0,73 | 0,52 |
|      | 62   | 8,6   | 0,44 | 0,44 | 0,44 | 0,37 | 0,37 | 0,41 | 0,4  | 0,73 | 0,73 | 1    | 0,4  |
| AI   | 26   | 4,7   | 0,81 | 0,81 | 0,81 | 0,67 | 0,67 | 0,76 | 0,72 | 0,52 | 0,52 | 0,4  | 1    |

# ASPIS-Fe88 covariance matrix for measured RR ratios (R<sub>i</sub>/R<sub>1</sub>)

| Det |       |        | Au     |        | Rh     | In     | S      |        | AI  |
|-----|-------|--------|--------|--------|--------|--------|--------|--------|-----|
|     | Patio |        | A11/A7 | A14/A7 | A14/A7 | A11/A7 | A12/A7 | A14/A7 | A7  |
|     | cm/cm | 1σ (%) | 2,0    | 2,1    | 1,8    | 2,0    | 2,9    | 7,7    | 6,1 |
| Au  | 46/26 | 2,0    | 1      | 0,5    | 0      |        |        |        | 0   |
|     | 62/26 | 2,1    | 0,5    | 1      | 0      | 0      | 0      | 0      | 0   |
| Rh  | 62/26 | 1,8    | 0      | 0      | 1      | 0      | 0      | 0      | 0   |
| In  | 46/26 | 2,0    | 0      | 0      | 0      | 1      | 0      | 0      | 0   |
| S   | 52/26 | 2,9    | 0      | 0      | 0      | 0      | 1      | 0,05   | 0   |
|     | 62/26 | 7,7    | 0      | 0      | 0      | 0      | 0,05   | 1      | 0   |
| AI  | 26    | 6,1    | 0      | 0      | 0      | 0      | 0      | 0      | 1   |



#### UKAEA & IJS activities (VI)



#### **Overview of correlations in SFCOMPO**

- · Common experimental sources of uncertainty: nuclide vector
  - Use of same methodology (e.g. mass spectrometry or gamma-ray spectrometry)
  - Nuclear data (e.g. gamma-ray emission probabilities, half-lives)
- Common sources of uncertainty in analysis/calculations:
  - Normalisation to BU:  $BU = N_f E_f / m_{HM}$ ;  $N_{BI} = N_f \gamma_{BI} \rightarrow$  correlations due to  $N_{BI}$  and  $E_f$ ,  $\gamma_{BI}$ , (exp. + nuclear data)
  - Normalisation to BI:  $N_{BI} = N_f \gamma_{BI}$   $\rightarrow$  correlations only due to  $N_{BI}$  (experimental data)
- Propagation to calculated nuclide vector:

$$\operatorname{cov}(N_{x,i}, N_{y,j}) = S_{x,i} \operatorname{cov}(N_{BI,i}, N_{BI,j}) S_{y,j}$$
$$S_{x,i} = \frac{\partial N_{x,i}}{\partial N_{BI,i}}$$
$$\operatorname{corr}(N_{x,i}, N_{y,j}) = \operatorname{corr}(N_{BI,i}, N_{BI,j}) = ?$$

x,y – nuclides

- *i*,*j* experiments/benchmarks
- **BI burnup indicator (nuclide)**

#### CEA activities (I)

#### Subtask 5.2.1 – Assessing correlations in integral experiments

While a considerable effort has been given to nuclear data covariances in recent years, much less attention has been paid to correlations in integral experiments used in validation, adjustment, and assimilation studies.

Deliverable: Report at M36

- Principle: derive an experimental correlation from uncertainties on common "technological parameters" (fuel enrichment, cell pitch, cladding thickness...) and uncertainties due to the measurement technique
- ▶ Relies on the sensitivities of the considered observables to the technological parameters
- ▶ [1] proposed an expression of the experimental correlation coefficient:

$$r_{i,j} = \frac{S_{TP,i}^{T} \cdot D_{TP} \cdot S_{TP,j} + \varepsilon_{ij}^{2}}{\delta E_{i} \cdot \delta E_{i}}$$

- $S_{TP,i}$  (resp.  $S_{TP,j}$ ) = sensitivity vector of experiment *i* (resp. *j*) to technological parameters -  $D_{TP}$  = covariance matrix for technological parameters
- $\varepsilon_{ij}$  = uncertainty due to experimental technique if the technique is identical between *i* and *j* 0 otherwise
- $\delta Ei$  (resp.  $\delta Ej$ ) = total experimental uncertainty

[1]: N. Dos Santos et al., «Impact of mock-up experimental correlations and uncertainties in the transposition process», Proceedings of ANIMMA, 2013

#### CEA activities (II)

#### Subtask 5.2.1 – Assessing correlations in integral experiments

While a considerable effort has been given to nuclear data covariances in recent years, much less attention has been paid to correlations in integral experiments used in validation, adjustment, and assimilation studies.

Deliverable: Report at M36

The expression proposed in [1] was tested here on the CAMELEON program on the EOLE mock-up reactor for several physical quantities measured with different experimental techniques on similar core configurations:

i)  $\rho_{\text{RES}}$  residual reactivity of a mixed UOx / UOx-Gd

ii) Δρ reactivity worth of UOx-Gd

iii) FR fission rate ratio on a fuel pin

▶ Input data to be tested for integral data assimilation

|                     | ρ <sub>RES</sub> | Δρ   | FR   |
|---------------------|------------------|------|------|
| $\rho_{\text{RES}}$ | 100              | 63.7 | 44.5 |
| Δρ                  |                  | 100  | 0.0  |
| FR                  |                  |      | 100  |

[1]: N. Dos Santos et al., «Impact of mock-up experimental correlations and uncertainties in the transposition process», Proceedings of ANIMMA, 2013