

D5.7. Report on reactor and shielding C/E validation and nuclear data trends

Linked to WP5/T5.2/ST5.2.2 – C/E validation and trends

Contributors:

UPM: N. García-Herranz, O. Cabellos, A. Jiménez-Carrascosa JSI/UKAEA: I. Kodeli, G. Žerovnik CEA/DES: D. Bernard NRG: S. van der Marck

1. Introduction

- 2. Methodologies for Nuclear Data Validation
- 3. Fast Reactors C/E validation and nuclear data trends
- 4. Thermal Reactors C/E validation and nuclear data trends
 4.1. Reactor benchmarks
 4.2. Commercial LWR
- 5. Shielding benchmarks C/E validation and nuclear data trends
- 6. Conclusions
- 7. References

+**** HORIZON 20	20	HORIZO FR EURO	ON 2020 AMEW PEAN) RESEAR ORK PRO ATOMIC E	CH AND INNOVATION GRAMME OF THE NERGY COMMUNITY	
Nuclear I	ission	and Ra	diation	Protectio	n 2018 (NFRP-2018-4)	
Project acronym:		SANDA				
Project full title:		Solving C	hallenges in	Nuclear Data for t	he Safety of European Nuclear <u>facilities</u>	
Workpackage N°:	N מ	/P5 5.7				
Type of document	ם יי ת יי	Deliverable				
Title:	the Report on reactor and shielding C/F validation and nuclear data trai					
	ralı D					
Dissemination Lev	/ei: P	P				
Dissemination Lev Reference:	/ei: Pi U	P PM/SANDA	420240201			
Dissemination Lev Reference: Status:	ven: Pr U V	P PM/SANDA ERSION 1.	420240201 0			
Dissemination Lev Reference: Status: Comments:	ven: P U V	P PM/SANDA ERSION 1.	A20240201 0			
Dissemination Lev Reference: Status: Comments:	ven: P U V	r PM/SANDA ERSION 1.	A20240201 0			
Dissemination Lev Reference: Status: Comments:	Ven: P U V Na	r PM/SANDA ERSION 1. me	A20240201 0 Partner	Date	Signature	
Dissemination Lev Reference: Status: Comments: Prepared by:	N. García	P PM/SANDA ERSION 1. me a-Uetranz	A20240201 0 Partner UPM	Date ??-??-2024	Signature <if <u="" all="" at="">possible use electronic signature></if>	
Dissemination Lev Reference: Status: Comments: Prepared by: WP leader:	N. García R. Ja	PM/SAND/ ERSION 1. me a-Berranz camin	A20240201 0 Partner UPM CEA	Date ??-??-2024 ??-??-2024	Signature <if <u="" all="" at="">possible use electronic signature> <if <u="" all="" at="">possible use electronic signature></if></if>	

1. Introduction

- Objective: C/E validation to contribute to the improvement of JEFF nuclear data files
- JEFF-based C/E biases are analyzed to identify needs for nuclear data improvement
 - **1.** Reactor physics experiments:
 - 1. IRPhE
 - 2. Partner's own databases: CEA/DES LWR
 - 3. Other legacy experiments: SEFOR, Almaraz NPP (IAEA)
 - 2. Shielding benchmarks: SINBAD

Experiments from different facilities, neutron spectra, and integral quantities of interest

- Different validation strategies applied, all of them based on calculating C/E
- But differing in how they use C/E ratios to assess the quality of the library and identify needs for ND improvement

Mean bias or	Perturbation	Trending analysis	Bayesian-based
weighted mean bias	analysis		analysis
 Different metrics applied 	 Impact of ND perturbations with respect to data from other libraries 	 Comparisons with trending parameters 	• GLLS method

Reactor physics benchmarks useful for ND validation (of SFR) have been identified and C/E assessed (UPM) Multiplication factor: set of experiments from IRPhE (12 experiments) with a high similarity to SFR

Benchmark identifier in IRPhEP	Fuel/Other	Experimental facility	Institution
EBR2-LMFR-RESR-001	$\mathrm{UO}_2/Sodium$	EBR-II	ANL, USA
SNEAK-LMFR-EXP-001	MOX/Sodium	SNEAK 7A	KFK, Germany
ZEBRA-LMFR-EXP-001	Pu metal- $\mathrm{UO}_2/Sodium$	ZEBRA 22	AEEW, UK
ZPPR-LMFR-EXP-001	MOX/Sodium	ZPPR-10A	ANL, USA
ZPPR-LMFR-EXP-002	MOX/Sodium	ZPPR-9	ANL, USA
ZPPR-LMFR-EXP-010	MOX/Sodium	ZPPR-12	ANL, USA
ZPPR-LMFR-EXP-011	MOX/Sodium	ZPPR-2	ANL, USA
ZPR-FUND-EXP-006	Pu-U alloys/Graphite	ZPR-3/53	ANL, USA
ZPR-FUND-EXP-007	Pu-U alloys/Graphite	ZPR-3/54	ANL, USA
ZPR-FUND-EXP-014	Pu-U carbide/Sodium	ZPR-9/31	ANL, USA
ZPR-LMFR-EXP-001	MOX/Sodium	ZPR-6/7	ANL, USA
ZPR-LMFR-EXP-002	MOX/Sodium	ZPR-6/7	ANL, USA

Perturbation with NDaST and GLLS for biases analysis

SLIDE 5

Sodium void reactivity effect: IRPhE (5 experiments selected)

Benchmark identifier	Experimental facility	Core Loading
ZPPR-LMFR-EXP-010-m12030	ZPPR-12	Loading 30
ZPPR-LMFR-EXP-010-m12033	ZPPR-12	Loading 33
ZPPR-LMFR-EXP-010-m12037	ZPPR-12	Loading 37
ZPPR-LMFR-EXP-011-case08	ZPPR-2	Loading 184
ZPPR-LMFR-EXP-011-case09	ZPPR-2	Loading 185

Doppler reactivity effect: lack of experiments in IRPhE; SEFOR experiments from SFR-UAM Reflector worth: potential of SEFOR calibration curves for ND validation of ²³⁹Pu, ⁵⁶Fe, ⁵⁸Ni

	Calculated at UPM					
SEFUR	SCALE-6.2.3 (R-Z model)					
Core II	JEFF-3.1.1	JEFF-3.3	Corrected JEFF-3.3			
Doppler constant	-676.6	-708.9	-688.7			
Core II C/E	1.010	1.058	1.028			

U-238 (n,γ) ratio JEFF-3.3/JEFF-3.1.1

his allowed to identify a typo for the 808 eV p-wave Γ_γ parameter

4.1 Thermal Reactor Physics benchmarks from IRPHE

• UPM analyzed C/E in KRITZ benchmarks (LWR lattices at KRITZ reactor in Studsvik) and trends with T^a

JEFF-3.3, the trend with temperature becomes stronger

Perturbation analysis using NDaST showed biases probably due to 235 U(n,fission) ~ 0.01 eV – 1eV

Ref.: Kodeli et al. Analysis of the KRITZ Critical Benchmark Experiments, NENE2009

	Cycle 1	Cycle 2	Cycle 3		Cycle 1	Cycle 2	Cycle 3		Cycle 1	Cycle 2	Cycle 3
REL2005	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]	REL2005	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]	REL2005	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]	(C/E-1) ± ∆E/E [%]
²³⁴ U/ ²³⁸ U	1.0 ± 0.3	1.2 ± 0.4	1.4 ± 0.5	²³⁴ U/ ²³⁸ U	1.1 ± 0.3	1.4 ± 0.4	1.7 ± 0.5	²³⁴ U/ ²³⁸ U	1.1 ± 0.3	1.4 ± 0.4	1.6 ± 0.5
²³⁵ U/ ²³⁸ U	0.3 ± 0.4	1.3 ± 0.7	1.6 ± 1.3	²³⁵ U/ ²³⁸ U	-0.2 ± 0.4	0.1 ± 0.7	-1.0 ± 1.3	²³⁵ U/ ²³⁸ U	-0.2 ± 0.4	0.1 ± 0.7	-0.9 ± 1.3
²³⁶ U/ ²³⁸ U	0.0 ± 0.2	0.5 ± 0.2	0.3 ± 0.2	²³⁶ U/ ²³⁸ U	0.1 ± 0.2	0.7 ± 0.2	0.5 ± 0.2	²³⁶ U/ ²³⁸ U	0.1 ± 0.2	0.6 ± 0.2	0.4 ± 0.2
²³⁷ Np/ ²³⁸ U	-7.7 ± 2.9	-3.3 ± 2.9	-2.0 ± 2.0	²³⁷ Np/ ²³⁸ U	-6.5 ± 2.9	-2.4 ± 2.9	-0.7 ± 2.0	²³⁷ Np/ ²³⁸ U	-6.7 ± 2.9	-2.7 ± 2.9	-1.1 ± 2.0
²³⁸ Pu/ ²³⁸ U	-5.6 ± 1.9	-4.0 ± 2.0	-3.4 ± 1.8	²³⁸ Pu/ ²³⁸ U	-3.6 ± 1.9	-0.3 ± 2.0	3.7 ± 1.8	²³⁸ Pu/ ²³⁸ U	-6.2 ± 1.9	-4.5 ± 2.0	-3.4 ± 1.8
²³⁹ Pu/ ²³⁸ U	0.6 ± 0.7	0.7 ± 0.9	2.2 ± 1.2	²³⁹ Pu/ ²³⁸ U	0.5 ± 0.7	-0.5 ± 0.9	0.5 ± 1.2	²³⁹ Pu/ ²³⁸ U	0.7 ± 0.7	0.0 ± 0.9	1.3 ± 1.2
²⁴⁰ Pu/ ²³⁸ U	-1.3 ± 1.2	0.3 ± 0.9	0.5 ± 0.7	²⁴⁰ Pu/ ²³⁸ U	-0.5 ± 1.2	0.6 ± 0.9	1.1 ± 0.7	²⁴⁰ Pu/ ²³⁸ U	-2.2 ± 1.2	-1.3 ± 0.9	-0.9 ± 0.7
²⁴¹ Pu/ ²³⁸ U	-2.5 ± 2.1	-1.6 ± 1.4	0.0 ± 2.0	²⁴¹ Pu/ ²³⁸ U	-2.1 ± 2.1	-1.5 ± 1.4	0.0 ± 2.0	²⁴¹ Pu/ ²³⁸ U	-2.5 ± 2.1	-1.8 ± 1.4	0.0 ± 2.0
²⁴² Pu/ ²³⁸ U	-2.5 ± 3.3	-0.8 ± 2.1	-0.2 ± 1.6	²⁴² Pu/ ²³⁸ U	-2.6 ± 3.3	-0.8 ± 2.1	0.6 ± 1.6	²⁴² Pu/ ²³⁸ U	-3.7 ± 3.3	-2.0 ± 2.1	-0.9 ± 1.6
²⁴¹ Am/ ²³⁸ U	•	•	-0.1 ± 3.2	²⁴¹ Am/ ²³⁸ U	•	•	-1.2 ± 3.2	²⁴¹ Am/ ²³⁸ U	•	•	-1.1 ± 3.2
²⁴¹ Am/ ²³⁸ U EOC			± 5.4	²⁴¹ Am/ ²³⁸ U EOC			± 5.4	²⁴¹ Am/ ²³⁸ U EOC			± 5.4
^{242m} Am/ ²³⁸ U		211L	8.9 ± 7.0	^{242m} Am/ ²³⁸ U		C 2 2 L	11.9 ± 7.0	^{242m} Am/ ²³⁸ U			12.3 ± 7.0
²⁴³ Am/ ²³⁸ U	JCLL-	э.т.т Г	-0.1 ± 4.1	²⁴³ Am/ ²³⁸ U	JEL	г-э.э 🗌	-2.6 ± 4.1	²⁴³ Am/ ²³⁸ U	JCLL-	4.010 L	-0.4 ± 4.1
²⁴³ Cm/ ²³⁸ U			-5.0 ± 15.0	²⁴³ Cm/ ²³⁸ U			24.6 ± 15.0	²⁴³ Cm/ ²³⁸ U			23.4 ± 15.0
²⁴⁴ Cm/ ²³⁸ U	•	•	1.0 ± 5.6	²⁴⁴ Cm/ ²³⁸ U	•	•	11.8 ± 5.6	²⁴⁴ Cm/ ²³⁸ U	•	•	14.2 ± 5.6
²⁴⁵ Cm/ ²³⁸ U	•	•	3.5 ± 7.5	²⁴⁵ Cm/ ²³⁸ U	•	•	25.3 ± 7.5	²⁴⁵ Cm/ ²³⁸ U	•	•	28.0 ± 7.5
²⁴⁶ Cm/ ²³⁸ U	•	•	-15.2 ± 8.2	²⁴⁶ Cm/ ²³⁸ U	•	•	-1.3 ± 8.2	²⁴⁶ Cm/ ²³⁸ U	•	•	0.5 ± 8.2
²⁴⁷ Cm/ ²³⁸ U	•	•	1.8 ± 29.7	²⁴⁷ Cm/ ²³⁸ U	•	•	11.5 ± 29.7	²⁴⁷ Cm/ ²³⁸ U	•	٠	13.5 ± 29.7
¹⁴³ Nd/ ²³⁸ U	-0.8 ± 0.6	-0.6 ± 0.6	-0.5 ± 0.5	¹⁴³ Nd/ ²³⁸ U	-0.1 ± 0.6	0.1 ± 0.6	0.2 ± 0.5	¹⁴³ Nd/ ²³⁸ U	-0.1 ± 0.6	0.1 ± 0.6	0.3 ± 0.5
¹⁴⁴ Nd/ ²³⁸ U	-1.3 ± 0.8	-1.5 ± 0.8	-1.6 ± 0.9	¹⁴⁴ Nd/ ²³⁸ U	-1.2 ± 0.8	-1.6 ± 0.8	-1.9 ± 0.9	¹⁴⁴ Nd/ ²³⁸ U	-1.1 ± 0.8	-1.6 ± 0.8	-1.8 ± 0.9
¹⁴⁵ Nd/ ²³⁸ U	0.0 ± 0.7	-0.1 ± 0.7	-0.5 ± 0.6	¹⁴⁵ Nd/ ²³⁸ U	0.3 ± 0.7	0.0 ± 0.7	-0.7 ± 0.6	¹⁴⁵ Nd/ ²³⁸ U	0.5 ± 0.7	0.4 ± 0.7	0.0 ± 0.6
¹⁴⁶ Nd/ ²³⁸ U	-0.3 ± 0.8	-0.4 ± 0.8	-0.1 ± 0.8	¹⁴⁶ Nd/ ²³⁸ U	0.6 ± 0.8	0.7 ± 0.8	1.1 ± 0.8	¹⁴⁶ Nd/ ²³⁸ U	0.3 ± 0.8	0.2 ± 0.8	0.3 ± 0.8
¹⁴⁸ Nd/ ²³⁸ U	0.5 ± 0.8	0.5 ± 0.7	0.6 ± 0.8	¹⁴⁸ Nd/ ²³⁸ U	1.5 ± 0.8	1.5 ± 0.7	1.6 ± 0.8	¹⁴⁸ Nd/ ²³⁸ U	1.0 ± 0.8	0.9 ± 0.7	1.0 ± 0.8
¹⁵⁰ Nd/ ²³⁸ U	-0.4 ± 0.9	-0.1 ± 0.8	0.0 ± 0.8	¹⁵⁰ Nd/ ²³⁸ U	-0.1 ± 0.9	0.0 ± 0.8	0.1 ± 0.8	¹⁵⁰ Nd/ ²³⁸ U	-0.1 ± 0.9	0.1 ± 0.8	0.2 ± 0.8
Σ ⁱ Nd/ ²³⁸ U	0.0 ± 1.0	0.0 ± 1.0	0.0 ± 1.0	Σ ⁱ Nd/ ²³⁸ U	0.7 ± 1.0	0.6 ± 1.0	0.6 ± 1.0	Σ ⁱ Nd/ ²³⁸ U	0.5 ± 1.0	0.4 ± 1.0	0.4 ± 1.0
BU Cray. [GWjj/t]]	13.6	22.0	35.2	BU Cray. [GWjj/t]]	13.6	22.0	35.2	BU Cray. [GWjj/t]]	13.6	22.0	35.2

While C/E results are consistent with experimental uncertainties, they show different trends with burnup, suggesting that some cross sections should be revised: ²³⁶U and ²³⁹Pu radiative capture and ²³⁸Pu production

4.3 Commercial LWR applications (UPM)

• UPM analyzed C/E for PWR Critical Boron Letdown Curve Almaraz II NPP – Cycle I (IAEA-TECDOC-815, 1995)

Modification Boron Let down (in ppm) - PWR Almaraz Cycle I

Nuclear Data:

Reference: ENDF/B-VII.1

Case JEFF-4T3_U8J4T2

- XS/JEFF-4T3 + U8/JEFF-4T2
- D TSL /JEFF-4T3
- DD/JEFF-3.3
- □ FY_U5_PU9/JEFF-4/CON

Full core simulations expensive to be used in ND validation

Many compensating effects, no clean benchmarks

But able to identify general trends due to ND

5.1. SINBAD benchmarks for validation of recent Fe evaluations (ENDF/B-VIII.0, JEFF-3.3 and FENDL-3.2)

Benchmark / quality	Additional information needed on:
ASPIS Iron-88 ~ ♦♦♦ Analyses by UKAEA (I.Kodeli)	 Review: new MCNP model. Additional information needed on: detectors arrangement (e.g. stacking) gaps between the slabs absolute calibration of neutron source & dilution factor effect of the cave walls
ORNL PCA Pool Critical Assembly - PV Benchmark (1980) Analyses by NRG (S.v.d. Marck)	 approximate modelling of neutron source (material test reactor (MTR) with a 93% ²³⁵U fuel elements) SINBAD quality evaluations to be performed
ASPIS PCA REPLICA - Winfrith Water/Steel ♦♦♦ Analyses by UKAEA (I.Kodeli)	 Supplementary information received from David Hanlon (Jacobs) on (available from WPEC SG47 Githab): geometrical arrangement of the fission plate and ASPIS cave; geometry and material of the detectors; measurement arrangement and background contribution availability of ²³⁵U fission chamber measurements
CIAE Iron slab 14 MeV benchmark Analyses by UKAEA (I.Kodeli)	 Ongoing SINBAD evaluation (presented at WPEC SG47) TOA neutron spectra measured from 5, 10 and 15 cm Fe slabs at 60^o and 120^o (~2016)

C/E for S(n,p) and Al(n,α) using ASPIS-Fe88, PCA & PCA Replica

Sensitivity profiles to ⁵⁶Fe(n,n') in deepest positions for PCA, PCA Replica vs. ASPIS Fe88

SANDA Meeting, 5 February 2024

5.2. KFK-1977 γ-ray leakage benchmark

• New SINBAD evaluation by Stanislav Simakov: KFK-1977 measured gamma from bare 252Cf(s.f.) source and from Ø25, 30 and 35 cm Fe spheres was prepared within WPEC SG47

KFK set-up:

KFK vs. IPPE: γ-ray leakage spectra from Fe Ø30cm with Cf-source

5.3. TOF Shielding Benchmarks in SINBAD

- FNS TOP (17 cases x 5 angles)
- Oktavian (15 cases)

ENS-TOF/50.0 CM(R)*60.0 CM(Z)-FE CYL.

• MCNP6 shielding suite (14 cases)

FNS/TOF results

SANDA Meeting, 5 February 2024

- Significant number of sets of reactor physics & shielding benchmarks, as planned
 - Extensive use of JEFF-3.3 and JEFF-4Tx for C/E estimates and trends identified
 - Deliverable structure already shared with all contributors (January 2024)
- Pending to send a draft so that contributors can include additional updated results/analysis
- \checkmark
 - Estimated date to send a 1st draft to contributors: March 2024
- Estimated date for completion: April 2024