D5.11 Report on integral experiments at LR-0

Resp. persons : Michal Kostal (CVŘ) & Romain Boffy (CEA) Presenter : <u>Robert Jacqmin (</u>CEA)

2022

Neutron noise measurement on 37 fuel element core [1,2] Measurements in pulse an current mode

2023

Publication of pile noise experiment on LR-0 reference core [3]

To-do in 2024

Analysis and experimental report on 2022 experiment Submission to peer-reviewed journal D5.11 SANDA deliverable report June 2024

References

[1] R. Boffy, B. Geslot, and P. Casoli, "Preparation of a neutron noise experiment in A37 VVER mock-up at LR-0," *CEA/DES/IRESNE/DER/SPESI/LP2E/NT/2022/011/indice A*, 2022.

[2] R. Boffy, B. Geslot, and E. Lerouge, "Compte-rendu de mission d'expérience MIRROR : Mesure des paramètres cinétiques d'un cœur à 37 éléments dans LR-0,"

CEA/IRESNE/DER/SPESI/LP2E/NT/2022/013_A, 2022.

[3] B. Geslot *et al.*, "A pile noise experiment in the reference core of the nuclear research reactor LR-0," *Ann. Nucl. Energy*, vol. 189, p. 109833, Sep. 2023, doi: 10.1016/j.anucene.2023.109833.

↑ 37 fuel element LR-0 core ↑

 \downarrow Power spectral density in pulse mode \downarrow

New experiments in benchmark reference neutron field

SACS measured in LR-0

Measurement in 3 large irradiation experiments

Very good agreement with calculation (ENDF/B-VIII PFNS and IRDFF-II dosimetry XS

Even foils in Cd cladding are in good agreement

New experiments in benchmark reference neutron field

New experiments focused on validation of ¹⁴N(n,p) cross section

A very large set of reaction rates were evaluated

¹⁴ N(n,p) ¹⁴ C	Mean [b]	Unc.	C/E-1
Experiment	0.3067	10.4%	-
ENDF/B-VIII.0	0.2920	0.10%	-4.8%
JEFF-3.3	0.2920	0.10%	-4.8%
JENDL-5	0.3060	0.10%	-0.2%

Correction from LR-0 to ²³⁵U PFNS

SACS measured in LR-0 corrected to ²³⁵U PFNS are in good agreement (disagreement in ¹¹⁵In(n,n') reflecting difference between LR-0 and ²³⁵U PFNS)

	E _{50%}	SACS [mb]	Rel. unc.	Eval./E-1
¹¹⁵ ln(n,n')	2.589	209.3	2.70%	-10.30%
⁴⁷ Ti(n,p)	3.647	17.97	2.00%	-0.70%
⁶⁴ Zn(n,p)	4.036	38.21	5.30%	1.80%
⁵⁸ Ni(n,p)	4.051	106.1	2.20%	2.00%
⁵⁴ Fe(n,p)	4.294	78.33	2.40%	-0.30%
⁹² Mo(n,p)	5.19	6.938	2.20%	-3.60%
⁴⁶ Ti(n,p)	5.862	10.72	2.20%	7.40%
⁶⁰ Ni(n,p)	6.811	2.086	8.50%	4.50%
⁶³ Cu(n,α)	7.019	0.5009	2.90%	3.30%
⁵⁴ Fe(n,α)	7.205	0.8707	10.50%	-0.70%
⁵⁶ Fe(n,p)	7.362	1.05	2.60%	2.80%
⁴⁸ Ti(n,p)	8.103	0.2909	2.60%	3.60%
²⁴ Mg(n,p)	8.125	1.412	4.60%	2.60%
²⁷ Al(n,α)	8.471	0.6764	2.30%	3.60%
⁵¹ V(n,α)	9.737	0.0234	3.50%	4.00%
¹⁹⁷ Au(n,2n)	10.414	3.372	4.00%	0.40%
⁹³ Nb(n,2n) ⁹² *	11.21	0.4307	3.10%	0.90%
¹²⁷ l(n,2n)	11.459	1.177	4.00%	1.80%
⁵⁵ Mn(n,2n)	12.796	0.2324	4.50%	0.00%
⁷⁵ As(n,2n)	12.797	0.3228	4.30%	-1.10%
⁸⁹ Y(n.2n)	13.797	0.1698	3.20%	0.80%
¹⁹ F(n,2n)	13.911	0.00769	4.00%	5.90%
⁹⁰ Zr(n,2n)	14.32	0.1053	4.00%	-0.70%
²³ Na(n,2n)	15.483	0.00394	4.80%	-1.90%

Gamma spectrum measurement in LR-0

Gamma spectrum measurement in special core (6 fuel assemblies) of 3.6% enrichment (2 years decay – very low background)

Gamma spectrum in LR-0

Measurement is consistent with ENDF/B-VIII.0

JEFF and JENDL show discrepancies in higher energies