

Development of a new Gaseous Proton Recoil Telescope

L. MATHIEU (LP2iB/CNRS)

• WP1: Developments of new innovative detector devices

- Task 1.1: Innovative devices from fission cross section to fission products decay studies
 - -- Subtask 1.1.1: fission cross sections
 - Subtask subdivision: Development of two new detector devices:
 - 1.1.1_1: LP2i-Bordeaux: Gaseous Proton Recoil Telescope (GPRT)
 - 1.1.1_2: CEA: Micromegas-based "transparent" detector with XY readout and TOF capable electronics
- D.1.1 (M48+6): "Report on the study and construction of new devices for precise fission cross section measurements"

Ludovic MATHIEU

I- Motivations

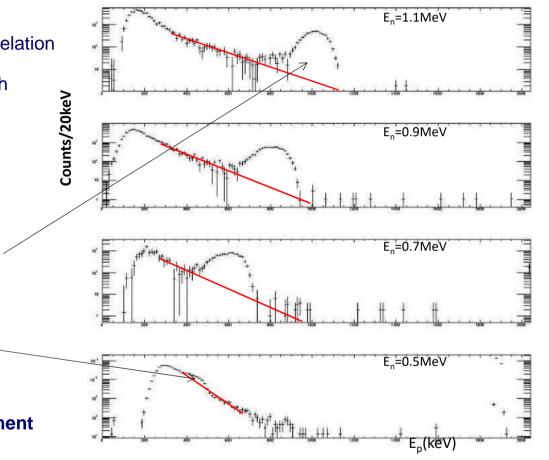
Cross section measurement relative to ¹**H(n,n)p**

Goal: to provide accurate Nuclear Data free from ²³⁵U(n,f) correlation

Mean: conversion of neutron flux into proton flux through H-rich radiator irradiation

Challenge for $E_n < 1 \text{ MeV}$

Recoil protons are detected:


- downstream the radiator
- with a small aperture angle to form a proton peak $(E_p \sim E_n)$

Low energy: high background coming from γ and e-

Impossible to count recoil protons with a good accuracy

A new detector is required with a low-sensitivity for $e^{-/\gamma}$

Gaseous Proton Recoil Telescope (GPRT) development

P. Marini et al., Nucl. Instr. and Meth. A, 841 (2017)

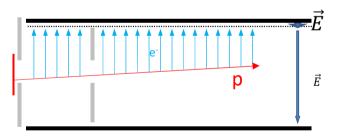
Ludovic MATHIEU

SANDA Final Workshop

II- Gaseous Proton Recoil Telescope

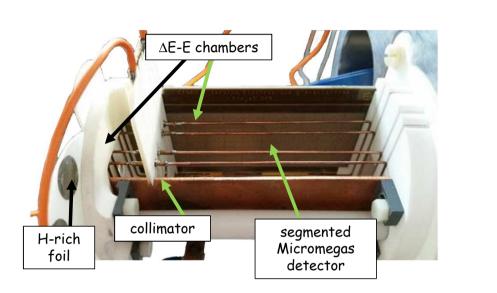
GPRT features

Gas detector:

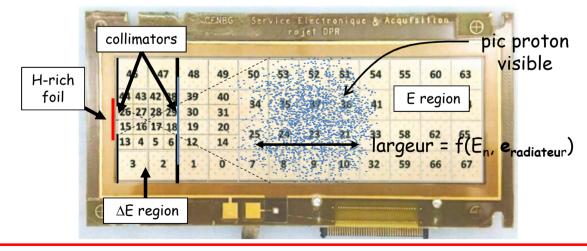

- to reduce γ/e^{-} sensitivity
- gas pressure adapted to the neutron/proton energy
- gas mixture 70%N₂-30%CO₂

Two chambers with collimator:

- to select only forward protons $(E_p \sim E_n)$
- precisely define the geometrical efficiency


Micromegas detector:

- for signal amplification
- high range in gain, good radiation hardness, good timing


Segmentation + slow gas: Time Projection Chamber

- 3D track reconstruction
- useful for parasitic track rejection
- scattering angle => initial neutron energy

SANDA

Supplying Accurate Nuclear Data for energy and non-energy Applications

Ludovic MATHIEU

SANDA Final Workshop

CINITS

II- Gaseous Proton Recoil Telescope

GPRT performances

Track reconstruction:

- works for alpha particles or recoil protons
- sees also some cosmic events (to be discriminated)

Low sensitivity to γ/e^{-1} :

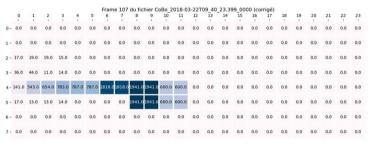
- low energy deposition from e⁻ in the gas
- trigger functions to catch real tracks and not isolated events
- low sensitivity achieved

Neutron discrimination:

- proton tracks from direct vs scattered neutrons
- discrimination based on track length

Low detection energy limit:

- limitation due to minimal acceptable range and radiator thickness
- track for recoil protons as low as 200 keV


Good electric field behaviour:

- electric field uniformity (field cage)
- stable under irradiation (electric charge remover)

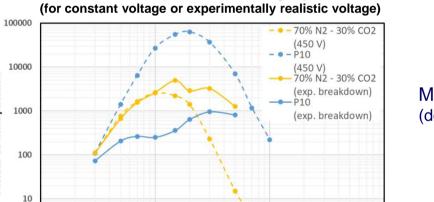
General functioning:

- gas regulation
- rotating sample disk

Low energy "recoil proton" track

High energy "direct proton" track

Pre-SANDA GPRT


- Final design achieved (with field cage and electric charge remover)
- Very few tests with the new slow gas mixture N₂-CO₂ (formerly CF₄)
- Only qualitative studies so far

10

Facteur de multiplication

3-5/07/2024

SANDA Final Workshop

1000

10000

Exploring the operating range (PhD thesis Carole Chatel)

Pressure studies and Breakdown voltage:

III- Studies and Evolutions

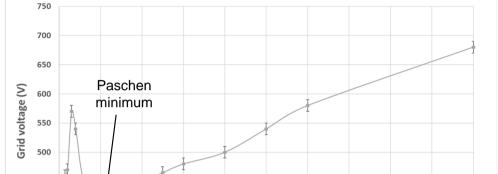
- gas pressure of few 100 mbar for alpha test, but few 10 mbar for recoil proton experiments
- unfortunately in the minimum of the Paschen curve
- an important limit to the GPRT operation, since it limits the Micromegas gain
- better breakdown voltage with N₂-CO₂ than P10

100

Pression (mbar)

- better behaviour with N₂-CO₂ than CF₄ at low pressure

Calculated multiplication factor vs gas pressure


Much higher breakdown voltage for N_2 -CO₂ than P10 induces higher gain (despite being theoretically less good)

Status:

450

- Quantitative studies performed
- Suitable operating conditions identified

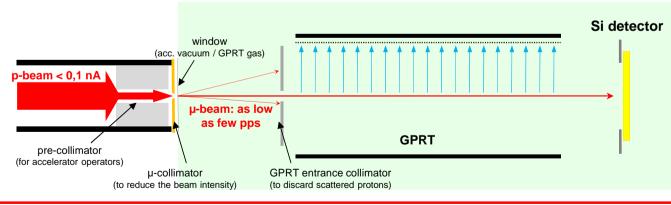
Breakdown voltage evolution vs the gas pressure $(N_2$ -CO₂)

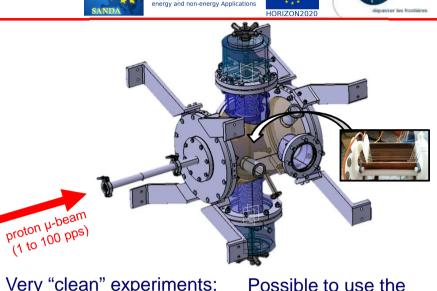
III- Studies and Evolutions

Efficiency measurement (PhD thesis Carole Chatel)

Accurate cross section measurement requires :

L an accurate flux measurement


L which requires and accurate N_n measurement


L which requires an accurate efficiency, and so a very well know intrinsic efficiency (ideally 100% as with a Si detector)

Measurements have been carried out to measure this intrinsic efficiency:

- with an alpha source at first ($\varepsilon_{instrinsic} \sim 100\%$ but not accurate enough)
- with a direct proton micro-beam :
 - . a dedicated chamber has been designed and built
 - , the micro-beam was sent in the GPRT and monitored downstream in a Si

Open-access publication: C. Chatel et al, "Development of a small Time-Projection-Chamber for the guasi-absolute neutron flux measurement", hal-04309742

SANDA

Supplying Accurate Nuclear Data for

Very "clean" experiments:

- mono-energetic particles
- exact same trajectories
- no intense EM noise

Tests have shown:

- $\varepsilon_{\text{intrinsic}} \sim 100\%$ only for very low counting rates
- $\epsilon_{\text{intrinsic}}$ drops as the counting rate rises (~50% for 30 pps)

Status:

- Efficiency studies performed
- Dead time issues with the DAQ

Ludovic MATHIEU

Si as trigger for the

GPRT

Ludovic MATHIEU

SANDA Final Workshop

- Work in progress by the LP2i SEA to study data transfer and optimize DAQ behaviour

- DAQ now has minimal performances to be operational

- reading frequency: 25 MHz
- Workbench tests (following u-beam experiments):
- measured dead-time of 7.3 ms !
 - 6 ms are lost during data transfer between DAQ and computer
- evidence of event loss during data transfer

Status:

Solutions:

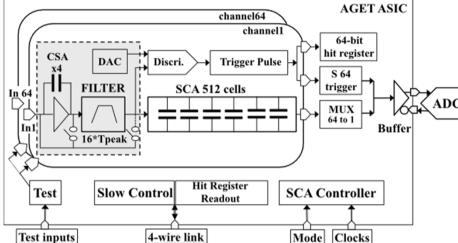
- degraded mode "1 event => 1 transfer": no more event loss during transfer
- data reading optimization development "partial mode": fewer channels read => dead time reduction

Data Acquisition System (DAQ)

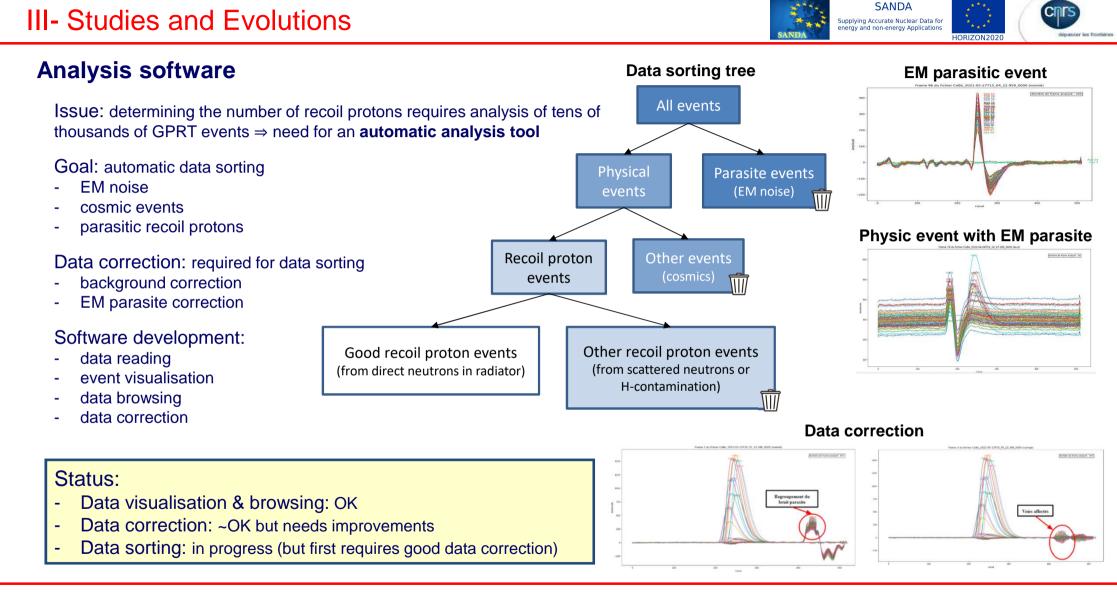
SAM system (Single AGET module):

III- Studies and Evolutions

- origin: GET system (General Electronic for TPC) developed by CEA 1 card = 4 AGET modules = 256 channels
- adapted for 64 channels by LP2i SEA team -


SAM characteristics:

theoretical dead time: 1% at 10 cps, 10% at 100 cps



SANDA

Supplying Accurate Nuclear Data for energy and non-energy Applications

E.C. Pollacco et al., Nucl. Instr. and Meth. A. 887 (2018)

Ludovic MATHIEU

• D.1.1 (M48+6): "Report on the study and construction of new devices for precise fission cross section measurements"

Conclusions included in the report

Detector performances:

- N₂-CO₂ gas mixture quantitative studies
 suitable for neutron flux measurement
 slow gas enabling 3D track reconstruction
- efficiency measurements with proton µ-beam
 - . dead-time issue revealed !
 - . ϵ = 100% at low counting rate

Analysis tool: for data sorting

- implemented features:
 - . data visualisation
 - . data browsing
 - . data correction
- work in progress for data sorting

DAQ performances: an efficiency issue which lasted a very long time

Status :

- problem identified (incorrect data transfer)
- in "low performance mode":
 - . ε = 100%
 - . dead time manageable
- \Rightarrow minimal performance requirements met !

The various GPRT technological building blocks are now validated

Report completed in M54 (on time)