

Development of the SCONE detector

G.Bélier, B. Fraïsse, A. Francheteaux, L. Gaudefroy, V. Méot et O. Roig, P. Morel (CEA/DIF/DPTA, UPS/LMCE) E. Berthoumieux, E. Dupont, F. Gunsing (CEA/IRFU/DPhN) D. Denis-Petit, B. Laurent et L. Lopez (CEA/DIF/DCRE)

Experimental program at NFS

- 1. Measurement of (n,xn) reaction cross-sections : one test experiment. Not enough beam time to demonstrate the feasibility
- 2. Study of prompt neutron and γ -ray emission in neutron induced fission
 - ✓ Complete neutron distributions
 - \checkmark Total γ -ray energy
 - \checkmark Averaged γ -ray multiplicity
 - Neutrons-γ correlations
 - Complete γ-ray multiplicity distributions

Neutron and γ -ray detection principle

- Neutrons:
 - ✓ Scattering on H → almost all the energy deposited in less than 30 ns → "prompt signal"
 - ✓ Radiative capture mainly on Gd (~90 %) after thermalization
 → delayed signal (1 50 µs). Neutron multiplicity through delayed capture events statistics.
- γ-rays: multiple Compton scattering → on average 55 % of energy deposited in less than 3 ns. "prompt signal"

 \rightarrow Averaged total γ -ray energy

Usual Gd-loaded liquid organic scintillator

SANDA meeting July, 3rd 24

Particularity of the SCONE setup

- Neutrons:
 - ✓ Scattering on H → almost all the energy deposited in less than 30 ns → "prompt signal"
 - ✓ Radiative capture mainly on Gd (~90 %) after thermalization
 → delayed signal (1 50 µs). Neutron multiplicity through delayed capture events statistics.
- γ-rays: multiple Compton scattering → on average 55 % of energy deposited in less than 3 ns. "prompt signal"

 \rightarrow Averaged total γ -ray energy + Multiplicity

Plastic scintillator + Gd foils

High segmentation + internal BGO array

SANDA meeting July, 3rd 24

SCONE in few numbers

- 992 plastic scintillator bars (25x25 mm wide)
- 1984 internal sheets: mirror foils + Gd loaded paint

Eight 1 m assemblies (36 bars) Sixteen 50 cm assemblies (36 bars) Eight 40 cm assemblies (8 bars)

1 m long assemby

FIC

²³⁸U deposit from JRC-Geel

1. Setup

FIC + BGO array

Compact fission chamber (FIC)

- Internal BGO array → lower the γray energy threshold (~120 keV)
- SCONE detector

48 independent γ -ray detectors \rightarrow multiplicities

Half of the BGO array

SANDA meeting July, 3rd 24

First experiment at GANIL/NFS on ²³⁸U

Neutron energy (MeV)

Neutron multiplicities

²⁵²Cf spontaneous fission

SANDA meeting July, 3rd 24

Prompt fission γ-ray calorimetry

Prompt fission γ **-ray multiplicities**

²⁵²Cf spontaneous fission

Conclusion

- Cross-section measurement for (n,xn) reactions to be demonstrated
- First complete neutron multiplicity obtained for high averaged multiplicities:

original method for P_{ν} unfolding (B. Fraïsse et al. PRC 108, 014610)

- **Prompt fission** *γ***-ray calorimetry**
- First large volume detector able to measure averaged γ -ray multiplicities
- Complete Pγ distributions can be obtained