Fission yield studies in inverse kinematics

SANDA meeting Subtask 2.5.2 CIEMAT July 3-5, 2024

José Benlliure

Universidad de Santiago de Compostela Spain

Sub-task 2.5.2 objectives

Accurate A, Z fission yields and TKEs from barrier up to some 60 MeV using quasi-free (p,2p) scattering in inverse kinematics as subrogate reaction to investigate the evolution of fission with the excitation energy.

²³⁸U(p,2p) \rightarrow ²³⁷Pa \rightarrow FF, ²³⁷Pu(p,2p) \rightarrow ²³⁶U \rightarrow FF, ²³³Pa(p,2p) \rightarrow ²³²Th \rightarrow FF

- Evolution of the fission yields with the excitation energy.
- Shell dumping and level densities evolution with excitation energy.
- Neutrons and gamma rays in coincidence.
- Beam time at GSI:
 - Setup: SOFIA@R3B

Beam time granted: 21 shifts main, 15 shifts parasitic

Running period, March 2021 (Covid period).

(p,2p) induced fission in inverse kinematics @ R3B/FAIR

Coupling CALIFA-tracker + GLAD + NeuLAND + SOFIA

First-ever complete kinematic fission experiment

- ✓ Characterization of the fissioning nucleus (A, Z, E*) \rightarrow (p,2p) with CALIFA+tracker
- ✓ Characterization of both fission fragments (A, Z, TKE,) → SOFIA
- $\checkmark\,$ Neutrons, gammas and light-charged particles \rightarrow NeuLAND + CALIFA

Setup as in Feb. 5 2021 ready to run

SANDA meeting CIEMAT July 3-5 2024

Identification of fission fragments in atomic number

Identification in atomic number from energy loss measurements in the two sections of the Twin-MUSIC

Resolution in atomic number: $\Delta Z = 0.38$ (FWHM)

Identification of fission fragments in mass number

Identification in mass number from Br (tracking) and time-of-flight measurements and the previous Identification in atomic number

SANDA meeting CIEMAT July 3-5 2024

 $Z_1 + Z_2 = 92$

 $A_1 + A_2 = 236$

U SC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Access to the excitation energy of the fissioning nucleus

(p,2p) quasi-free scattering to induce fission in inverse kinematics via particle-hole excitations.

Damping of shell effects with the excitation energy

USC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Evolution of the fission yields with the excitation energy

Damping of shell effects with the excitation energy

Evolution of fission modes in Z-yields with the excitation energy

Evolution of fission modes in N-yields with the excitation energy

Antía Graña PhD, USC

Evolution of fission modes in N- and Z-yields with the excitation energy

Antía Graña PhD, USC

Evolution of TKE with the excitation energy

Evolution of total kinetic energies with the excitation energy

- The objectives proposed in subtask 2.5.2 were accomplished and the corresponding deliverable (D 2.14) was submitted on October 15th, 2022.
- ✓ The use of (p,2p) reactions in inverse kinematics to investigate the fission process was validated.
- The dumpling of shell effects and the evolution of the fission modes with the excitation energy was investigated using N and Z fission yields.
- \checkmark The evolution of TKE with the excitation energy was also investigated.
- \checkmark Information of neutron and γ -ray multiplicities could also be obtained in future.

QFS-induced fission

(p,2p) quasi-free scattering to induce fission via particle-hole excitations

- Well defined kinematical conditions
 - Momentum and excitation energy of the recoiling fissioning nucleus
- ✓ Relatively large cross sections
 10 50 mb
- CN energy due to particle-hole excitations and nucleon re-scattering

 up to 80 MeV
- Possibility to use unstable nuclei
 inverse kinematics