Light Element Evaluation SANDA, WP 4

Helmut Leeb

TU Wien, Atominstitut

This work has been carried out within the Euratom Project SANDA (Supplying Accurate Nuclear Data for energy and non-energy Applications) under grant agreement No 847552. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Goal of the project work at TU Wien

Task:

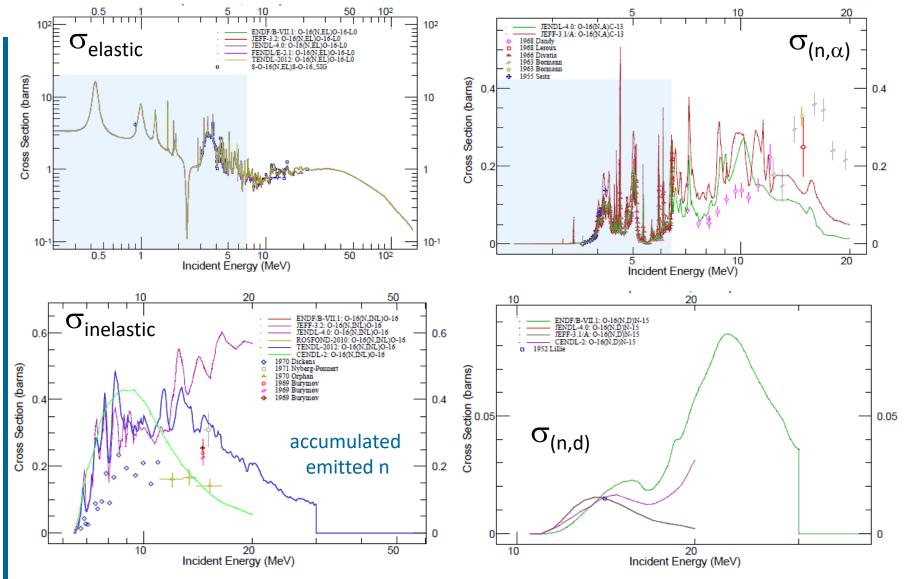
Development of a Bayesian evaluation technique of light nuclear systems for R-matrix based descriptions of reaction data in light nuclear systems

Motivation:

Knowledge of reaction data of several light nuclear systems are of great technological interest.

⁶Li(n,t) ⁴He, ⁹Be(n,2nα) ⁴He nuclear fusion, neutron source

 $^{16}O(n,\alpha)$ ^{13}C , $^{12}C(n,\alpha)$ ^{9}Be embrittlement of structure materials


Problem:

Nuclear data evaluation of light nuclear systems is hampered by the lack of quantitatively reliable microscopic models. Frequently R-matrix based descriptions are used → problem for Bayesian evaluation techniques.

Example: Evaluated Files for n+16O Reactions

Generating evaluated files: Nuclear reaction data of light nuclear systems

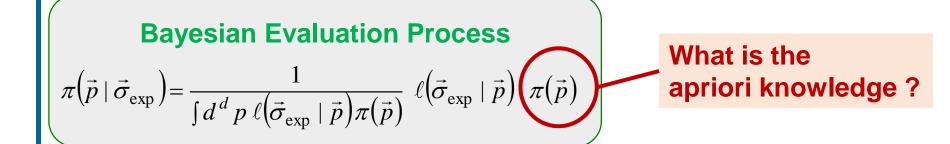
Coarse Overview:

The available evaluated files of nuclear data for light nuclear systems are generated by one of the following methods

- 1) Evaluation generated exclusively from available experimental data
 - limitation to channels with experimental data, consistency not guaranteed, prior of complete ignorance should be used.
- 2) Evaluation generated by combining an R-matrix analyses at low energy with a fit of available experimental data at high energies
 - same problems as in 1) for the fit of experimental data.

Problem: Uncertainties generated from the Hessian of the χ^2 -fit either of the experimental data, or the resonance parameters. Frequently too small uncertainties are obtained

In general: No Bayesian evaluation procedure is usually performed.



Bayesian Evaluation of Reaction Data of Light Nuclear Systems

Question:

Is the concept of Bayesian statistics applicable in light nuclear systems?

Problem:

Parameters of R-matrix are determined from experimental data What is the a-priori knowledge????

Proposal for generating a prior for the R-matrix analyses

Available a-priori information

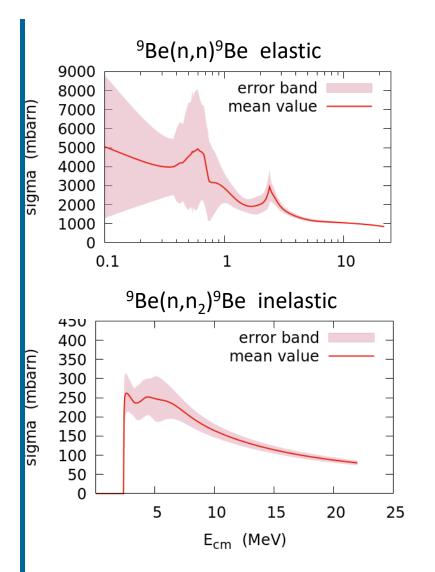
level scheme of the compound nucleus (E_{lv} , J^{π}) partitions, thresholds E_{th}

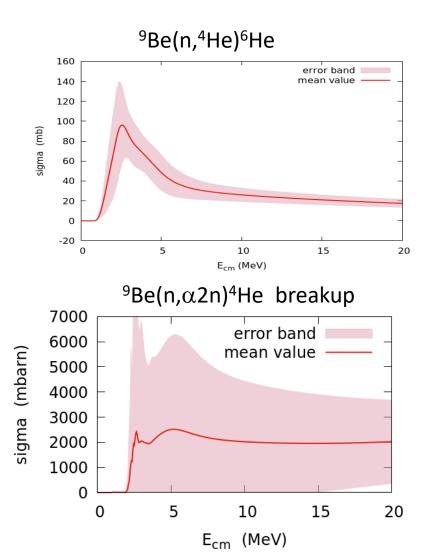
R-matrix parameters: resonance energy E_r

reduced widths γ_{i}

form of resonance

Generate Monte Carlo sweeps of cross sections with R-matrix code variation of E_r within 0.5 MeV, matching radius 0.2 fm, γ -widths of previous R-matrix analysis varied within Turchin/0,25


Quasi a-priori covariance matrix extracted:


limited knowledge on the position of resonances knowledge of J^π included and thus features of the resonance high energy behaviour determined variation of matching radius a

Generated Prior for n+9Be Evaluation in the R-matrix regime

Linearized Bayesian Update

normal distributions assumed for

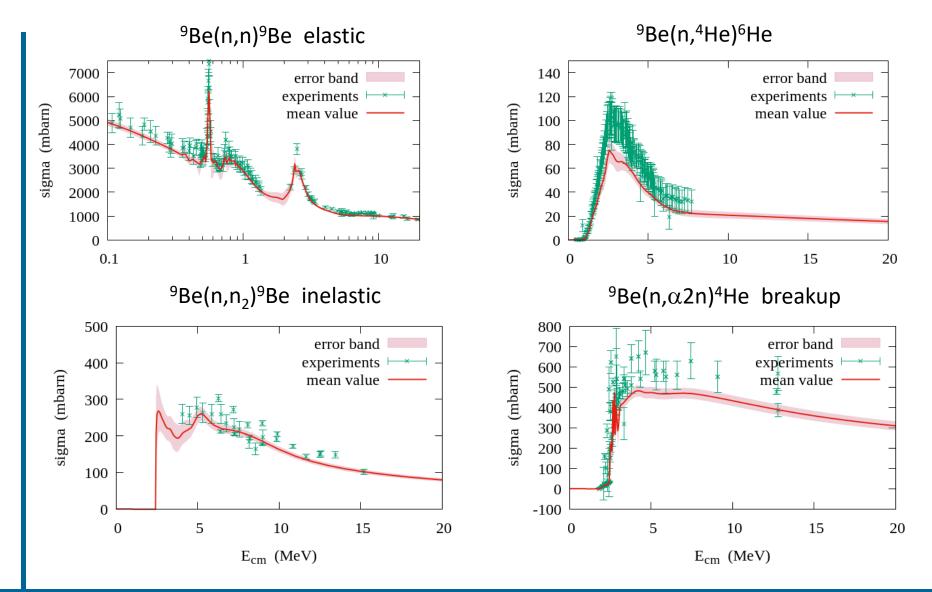
experimental uncertainties, $\vec{\varepsilon}_{\rm exp} \sim N(0, \mathbf{B})$

likelihood and $\ell(\vec{\sigma}_{\exp} \mid \vec{p}) \sim N(M(\vec{p}), \mathbf{B})$

model parameters $\pi(\vec{p}) \sim N(\vec{p}_0, \mathbf{A}_0)$,

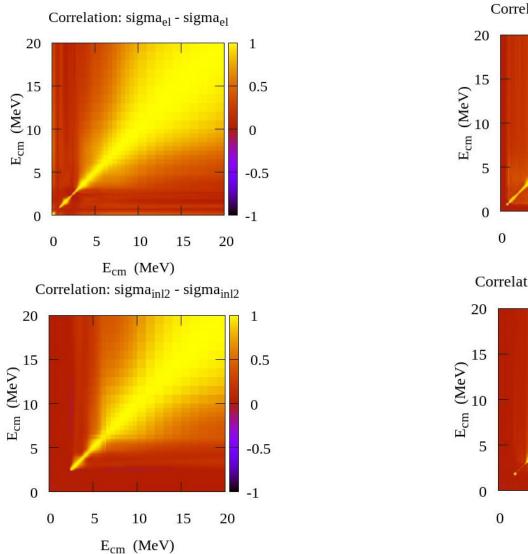
GENERALISED LEAST SQUARE (GLS): Using multi-variate normal distributions allows linearization of Bayesian Theorem for update:

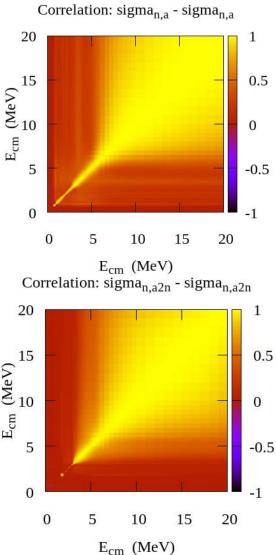
$$\vec{\sigma}_1 = \vec{\sigma}_0 + \mathbf{A}_0 \mathbf{S}^T \left(\mathbf{S} \mathbf{A}_0 \mathbf{S}^T + \mathbf{B} \right)^{-1} \left(\vec{\sigma}_{\text{exp}} - \mathbf{S} \vec{\sigma}_0 \right)$$


$$\mathbf{A}_1 = \mathbf{A}_0 - \mathbf{A}_0 \mathbf{S}^T \left(\mathbf{S} \mathbf{A}_0 \mathbf{S}^T + \mathbf{B} \right)^{-1} \mathbf{S} \mathbf{A}_0$$

Sensitivity Matrix: $\vec{\sigma}_{\text{int}} = M_{\text{surr}}(\vec{\sigma}_{\text{mod}}) = S\vec{\sigma}_{\text{mod}}$

Bayesian Evaluation of n+9Be via GLS





Bayesian Evaluation of n+9Be via GLS Correlations

Summary

Deliverable was submitted by the task leader in spring 2023

Publications:

H. Leeb, Th. Srdinko,

Towards a Bayesian evaluation technique for light nuclear systems,

EPJ Web of Conferences 294, 04006 (2024)

https://doi.org/10.1051/epjconf/202429404006

Outlook:

The developed proposal for an R-matrix based prior is currently the starting point for further developments on the basis of the level matrix in the recently proposed R-matrix parametrisation of Park

Thank you for your attention