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Outline

What are GW and what can we learn with/from them?
How are they detected.

CIEMAT Group and goals.

Activities in Virgo.

The future: E.T
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What are Gravi_’ra’\’ri‘onal Waves
and-
what can we learn with/from them?

222222222222222222



What’s a gravitational wave

Traveling linear perturbations in the metric due to
the acceleration of a mass distribution with a
non-vanishing quadrupole or higher order moment.
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Einstein equa’rions,
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Weak field.
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And copy from electromagnetism
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Simplest case_

Point like, equal masses

Newtonian stable orbit
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Frequency of the orbit
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hey messages

(remember.. copy from elzcromaqnefisml‘
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hey messages

(remember.. copy from elzcromaqnefisml‘

g«ﬂw M-

t"

—\

Quadrupole instead dipole
(source is 2-tensor instead of vector)



hey messages

(remember.. copy from elzcromaqnefisml‘

;}ﬁ» M-

r \ Amplitude only depends on

- Mass
- Frequency (observable)
”1 - Distance
m
A A —

g ... for a single mode
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hey messages

(remember.. copy from elzcromaqnefisml‘

g«% M-

Emltted energy only depends on

- Mass
- Frequency (observable)

... and modifies the distance (so
the frequency)
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hey messages

(remember.. copy from elecromagnetism)

Measure the GW frequency and its

variation with time to get the mass

Use mass and frequency to get

the distance from the amplitude
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of the GW
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Some words of cau’rion.

Life is much more complicated:

These relationships break down when the speed of the bodies get close to ¢

- This happens when the distance is of the order of the Schwarzschild radius

- Spin of the bodies plays a role: there are more than a single mode in reality

- For different body masses, things get a bit more complicated (but not too
much)

- The emission is not isotropic, so the measured amplitude depends on where

it is observed w.r.t. the orientation of the orbit.

... and this are just the most obvious oversimplifications.
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An academic example of event
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With >1 detector time

delay estimates direction.

... butis is (again) more complicated
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An academic example of event
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Usually the analysis
makes uses of the
Q-transform of the signal.

' Fancy name for freq vs time vs amplitude
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AN Detectors

Sources

" M. Bailes et al. 2021 '_
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Physics topics

What is the physics of stellar core collapse? How often do core-collapse supernovae occur?

What is the equation of state, and what are the radii, of neutron stars?

What are the multi-messenger emission mechanisms of high-energy transients (gamma-ray
bursts and kilonovae)?

How do binary black holes of tens of solar masses form and evolve?

How did super-massive black holes at the cores of galactic nuclei form and evolve and what
were their seeds and demographics?

Are black hole spacetimes as predicted by general relativity?

16
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Physics topics

Are there any signatures of horizon structure or other manifestations of guantum gravity accessible to
gravitational-wave observations?

|s dark matter composed, in part, of primordial black holes, or must it be composed solely from exotic matter
such as axions or dark fermions?

What is the expansion rate of the Universe?

What is the nature of dark energy?

Is there a measurable gravitational-wave stochastic background due to phase transitions in the early Universe?
How does gravity behave in the strong/highly dynamical regime?

Are black holes, neutron stars and white dwarfs the only compact objects in our Universe, or are there even
more exotic objects?
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Solar Masses
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Masses In the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars
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Mass Gap?

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern
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' How are GUJ) detecied

’

in Advanced Inferferometers?
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What’s the magnitude of the problem?_

Measure changes in the length between two points:

4 + h A
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Best precision These can only add
reached with few zeroes

interferometers
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[Measuring with an inferferometer
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[Measuring with an inferferometer
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[Measuring with an inferferometer
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[Measuring with an in‘rerfzromz’rzg
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Requires a extremely stable and powerful laser:

- Relative error due to Poisson fluctuations has to be smaller 10™°

- For100Hz sampling window this goes to the TOMW scale
- Most powerful continuous laser are at the 10kW scale, so no way.
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How tfo solve the problem?

2

Increase L as much as possible:

OI OV"

)\\g\
|

\_ ) - By keeping the photons as long as possible in the
interferometer arms.

Introducing optical cavities!

28
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Optical cavi’rizs.

/ Semi Yrorsgaveal ?,,’ec.{' m:rh
MY

Trap the laser between mirrors.

Expectations:

The phase is multiplied by the
number of reflections.

The amplification increases in the
same way.

29







GW strain Ty
e VIRGD
.//"l\
Pre-stabilized é
laser enclosure .
GW travelling End test
direction mass Y arm,

Input P
mode Input tes
cleaner  |MassT arm

cavity

Signal-
recycling cavity / ,
Output Beam e
photodiode splitte
Output e S
mode cleaner—<= _~ Input test

-

mass X arm 4

g End test
mass X arm



[loise sources
o
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[loise sources
o

Seismic noise + Thermal noise\
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[loise sources
o

Fluctuations in radiation pressure\
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AN "‘W Poisson fluctuations
wJ

Transfer of momentum

per foton 1/ integration time




Radiation pressure noise




MIEL T noise.
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Quantum noise
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Virgo: sensitivity evolution
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Ligo-Virgo-kagra timeline.
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Activities in Virgo




Participants

Daniel
Beltran
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Upgrade of IMC
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Upgraded IIMC payload for 05

Motivations for a new payload:

- Add a ring heater to the IMC Payload to control the curvature of the mirror

Tasks:

laser enclosure

- Study the impact of adding the ring heater to the IMC Payload gi\r’\écttr?ovs“ing
- Design a new dummy mass structure -
° ' N~ /—\\’i | Input
LR N
. '/\ \ "/ N\ : mode
- Manufacturing the needed parts SO O cleaner
- \\r_ vr N \_\‘ -
= AN A AN :
- Help during the test and installation RN \f

i \ =

o = o
Power-recycling SN
cavity s _, \ o
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Upgraded IIMC payload for 05

A preliminary study has been initiated by facing up the 3D models of the IMC system
and the Ring Heater to identify affected components.

Additionally, physical properties of materials are being added to evaluate the impact
on the center of gravity of the final assembly.

The manufacture of a Reference Mass part has begun in our mechanical workshops in
order to evaluate the difficulties and necessary precisions.

CIEMAT Feb. 29th 2024
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Low latency cluster for 05
D

® 3

b

CIEMAT provides and hosts a low-latency computing cluster. :;’ ﬁ
- A

(| i S

Aims to run analysis pipelines to provide a fast response ‘“ %3
(alarm) to the astroparticle communities. o
ui -:\

Complementary to the the ones running locally in Virgo
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Low latency cluster

-~ — < Live data
—gp MDC data
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.
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Computing resources for VIRGO/LIGO

Joined the LIGO/VIRGO Grid in Summer 2019.

— Site integration was fast and painless, thanks
to common sw stack with LHC and others.

GPU Wall Hours by Facility v

CPU and GPU access through HTCondor.
Transparent & efficient access to sw and data
through CVMFS.

pi (

8

Overall contribution: 10% of the CPU (EU) and
GPU (Global) to VIRGO/LIGO

— Opportunistic resources only

4
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Low latency cluster

2 Main servers/ submission machines

7 Worker nodes (startd’s of the
HTCondor pool)

(2 cores per node
256 GB (3.55 GB per core)

CVMES software/ data

CIEMAT Feb. 29th 2024
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Online Cluster
Online
Storage (“5TB "
expandable)

AdV Low-latency
distribution
+

Data aggregation

(2 virtual machines, 24
CPU / 290.4 HS06)

AdV Low-latency
distribution
(Cascina)

allGO Low-
latency

distribution
(Caltech)

Low-latency
pipelines
(running on HTCondor,
240 CPU /2904 HS06)

GraceDB
Event candidate
Database

» DW late

' Data L).<[f1".‘a'
ytransters (lldd-Kafka
¥ fvent candidate excha ge

Software distribution
(Conda + CVMFS =
IGWN env)
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Analysis

SSM events detection and
reconstruction:

- Goal: search for PBH

- Start with studies based in
simulated events.

- Currently learning the
JINIIESY
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Regression and classification wi
Virgo public data and codes

Test on a 200 epoch Low Mass Model
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Regression and classification with
Virgo public data and codes

4 \ .
Chirp Mass regressor
Relative errors for Chirp Mass
- D. Beltran TFM Low Mass
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Going deep (first baby steps)

Ligo simulated events lasting from 0.5 to 4 seconds
1 (signal)+21 (noise) classes.

Based in Q-transform images

CIEMAT Feb. 29th 2024
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Confusion mafrix
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Understanding why
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The fu’rurq
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The fu’rurq

EU Opening
ESFRI consultations Einstein
proposal decide location Telescope

2025/26 2035 EEEEEEEES

Site Start of Dismantling
procedure construction

CIEMAT Feb. 29th 2024



Einstein Tzlescgpe Computing

We participate in the ET e-Infrastructure Board (EIB)

- EIB mandate: “...to design, create and operate an
‘ I Ctsome evolving, efficient and functional e-infrastructure
Bl

environment at a reasonable cost for the collaboration.”

Initial focus:
n e Prepare a plan of the studies and activities that need to
et be undertaken for the development of the ET
computing.
o . e Propose acomputing model and its updates to the

Board

collaboration.

59
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EIB Urganiza’riop

EIB Chairs: Stefano Bagnasco (INFN), Patrice Verdier (IP21 Lyon - IN2P3)
ET-PP WP8 leaders: Achim Stahl (U. Aachen), Sergi Girona (BSC) + Nadia Tonello (BSC)

Division 1: Software, frameworks, and data challenge support, Andres Tanasijczuk (UCL)
Division 2: Services and Collaboration Support, Antonella Bozzi (EGO)
Division 3: Computing and data model, Resource Estimation, Gonzalo Merino (PIC/CIEMAT)

Division 4: Multimessenger alerts infrastructure, Steven Schramm (Université de Geneve)
TTG: Technology Tracking working Group, Sara Vallero (INFN Torino)

Liaison with OSB Div. 10: John Veitch (University of Glasgow)

Joint WP8+EIB weekly call for coordination

CIEMAT Feb. 29th 2024
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EIB Divd - Computing Model

The challenge:  The most obvious difference between ET with respect to 2nd Gen

interferometers data is the increased event rate, thanks to the much improved sensitivity.
e 2G eventrates ~100 events per year = ET event rates 100,000 events per year.
e Thechallengeisinthe computing (CPU/GPU resources and algorithms) not the data volumes.

Div3 Initial Tasks:
e Analysis of current Gen2 detectors computing models
o identification of bottlenecks and areas that will require evolution
e Methods to address ET analysis challenges
e Analysis acceleration (incl. ML), signals overlap, continuous signals, low-frequency ...
e Requirements from theory
o Numerical simulations, waveform models development

61
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ET Mock Data Challenge

The ET collaboration will use a rolling program of Mock Data Challenges (MDCs) to provide
qgualitative and quantitative input on ET computing resource needs before operations
begin.

Realistic simulated data containing instrumental noise + GW signal from population of
sources at the output of E1, E2 and E3 has been produced and it is available for people to
analyze.

Goals:

e Use this data to test, develop, optimize data analysis pipelines and parameter
estimation.
e Stress-testing the current computational infrastructure.

CIEMAT Feb. 29th 2024
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Thank You!
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INFRA_DEV ET-PP

Horizon Europe project for ET Preparatory
Phase (Sep 2022 - Sep 2026)

e Address fundamental prerequisites for the
approval, construction and operation of ET.

WP8 is the computing and data access work
package.

Coordinated work with ET EIB.
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ET-PP WP8

A first workshop was organized to gather

information for preparing the first
deliverable:

“Workflows Requirements collection and
constraints: computing and data”

The document is currently under internal
review.
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26-27 Oct 2023
Department of Astronomy, University of Geneva
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Timetable

Thu 26/10 | Fri27/10 = All days
Registration
Participant List

Transport
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Q 141223792481

10:00
astasios.fragkos@uni

Astrotec Jura/Lac, Department of Astronomy, University of Gel

Welcome

\strotec Jura/Lac, Department of Astronomy, University of Ge!

Setting the scene - the strawman ET computing model

strotec Jura/Lac, Department of Astronomy, University of Ge

‘Computing and data requirements from the Instrumentati

10:30 - 10:50

10:50 - 11:00

Stefano Bagnasco @

11:00 - 11:45

Dr Loic Rolland @
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budgz’r.

m— Quantum noise
Gravity Gradients

m—— Suspension thermal noise
Coating Brownian noise
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Substrate Brownian noise
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Total noise
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