Twists in Top: Searching for (pseudo)scalar tr production

Alexander Grohsjean

16th of January 2025

EXZELLENZCLUSTER QUANTUM UNIVERSE

Top Quarks

- top quarks are special
- short lifetime of O(10⁻²⁵) s
 - \rightarrow top spin propagated to decay products
- heaviest elementary particle:
 172.52 ± 0.33 GeV (PRL 132 (2024) 261902)
- top-Higgs coupling close to 1
 - \rightarrow top might be a key in finding (pseudo)-scalars beyond the SM

- extend SM by one complex SU(2) doublet
- four additional degrees of freedom: H/A/H⁺/H⁻
- up-type quarks couple to ϕ_1 , down-type quarks and charged fermions to ϕ_2
- strong couplings to top quarks:

if $m_{A/H} > 2m_t \rightarrow t\bar{t}$ final states promising for a discovery

$A/H \rightarrow t \bar{t}$ Signal at the LHC

CMS

• A/H production in gluon fusion via top quark loop

• A/H production in gluon fusion via top quark loop

$A/H \rightarrow t\bar{t}$ Signal at the LHC

SM tī

4

3

2

3.5

2.5

1.5

0.5

1.1

0.9

400

500

600

700

0

 $rac{d\sigma_{t\bar{t}}}{dM_{t\bar{t}}} \left[\mathrm{pb/GeV}
ight]$

Ratio

PRD 95 (2017) 095012

800

 $M_{t\bar{t}}$ [GeV]

 $\mathcal{L}_A^{\text{int}} = ig_{\text{At}\overline{t}} \frac{m_{\text{t}}}{v} \overline{t} \gamma_5 \text{tA}$

900

 $\frac{m_{\rm t}}{-}\overline{
m t}
m tH$

Scenario 1b

SM

LO -----

1000 1100 1200 1300

scale uncertainty

2HDM + SM

 $\sqrt{s} = 13 \text{ TeV}$

• A/H production in gluon fusion via top quark loop

A/H

• MC realization:

تووود

9 0995

- generic A/H UFO at LO in QCD
- free parameters: masses, widths, coupling modifiers g_A/g_H
- NNLO QCD K-factors for normalization (SusHi, CPC 184 (2013) 1605)

SM Pseudoscalars: tī Quasi-Bound States

- use non-relativitic QCD
- color-singlet (attractive)
 - \rightarrow peak below the $t\bar{t}$ threshold
- color-octet (repulsive)
 - \rightarrow expected to be small below threshold

SM Pseudoscalars: tt Quasi-Bound States

- use non-relativitic QCD
- color-singlet (attractive)
 - \rightarrow peak below the $t\bar{t}$ threshold
- color-octet (repulsive)
 - \rightarrow expected to be small below threshold
- difficulties: matching to NLO pQCD

Approximating tī Quasi-Bound States

- simplified η_t model for MC simulation (Fuks et al., PRD 104 (2021) 034023)
 - generic spin-0, color-singlet state η_t
 - couplings to gluons and tops (pseudoscalar)
 - mass from fit to NRQCD: $m_{\eta t} = 343 \text{ GeV}$
- pick large η_t width but restrict mass
 window to 337 349 GeV for
 p p > η_t > W b W b
- to remember:
 - details of lineshape well below experimental resolution (15% - 25%)
 - very similar signature as low-mass A resonance

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

key to tt mass

analytic reconstruction of tt system

- 6 unknowns (2 v's)
- 6 constraints:
 - p_T^{miss} from v's
 - top and W masses
- assign b-jets using m_b-based likelihood
- finite detector resolution:
 - repeat 100 times with smeared inputs

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- key to tt mass and spin correlation
- c_{hel}: scalar product of leptons in parent top rest frame

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- key to tt mass and spin correlation
- c_{hel}: scalar product of leptons in parent top rest frame
- c_{han}:scalar product of leptons with sign flip in top direction

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- key to tt mass and spin correlation
 - c_{hel}: scalar product of leptons in parent top rest frame
- c_{han}:scalar product of leptons with sign flip in top direction

16th January 2025

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- reconstruct tī system with geometric approach (NIM A 736 (2014) 169)
- maximize sensitivity by using events with just 3 jets
 - energy correction factor for lost or merged jets (NIM A 788 (2015) 128)

jet 💈

- explore full Run II data set at 13 TeV with 138 fb⁻¹
 recorded between 2016 and 2018
- two analysis channels: dilepton (II) and lepton+jets (ljets)

- reconstruct tī system with geometric approach
- use emission angle of leptonic top with respect to tt:
 - flat for A/H/ η_t

16th January 2025

Background Modeling

- major irreducible background: SM tt
 - NLO MC (Powheg+Pythia 8)
 - correct to NNLO QCD and NLO EW fixed-order predictions
 - reweighting in bins of m_{tt} vs. cosθ*
 - EPJC 78 (2018) 537, EPJC 51 (2007) 37
 - normalize to NNLO+NNLL cross section
 - CPC 185 (2014) 2930

Background Modeling

- major irreducible background: SM tt
 - NLO MC (Powheg+Pythia 8)
 - correct to NNLO QCD and NLO EW fixed-order predictions
 - reweighting in bins of m_{tt} vs. cosθ*
 - EPJC 78 (2018) 537, EPJC 51 (2007) 37
 - normalize to NNLO+NNLL cross section
 - CPC 185 (2014) 2930

- other backgrounds: tW, t-channel single-top, rare processes (from MC)
- Z+jets in II: MiNNLO predictions with data-driven normalization around Z peak
- QCD processes in ljets: data-driven shape from sideband with no b-tags

16th January 2025

138 fb⁻¹, Run 2 (13 TeV)

1200 600

 $< c_{han} < 1$

 $< C_{hel} < \frac{1}{3}$

Data

1200

 $< c_{han} < 1$

 $< c_{\rm hel} < 1$

Data

1200

-0.5

0.0

0.5

1.0 C_{han}

0.4 0.2

0.0 **L** -1.0

- c_{hel} slope at threshold prefit
- flat for high m_{tt}

16th January 2025

c_{hel} discrepancy fits
 A very well at threshold

16th January 2025

16th January 2025

L4Jets Result

consistent picture in Il and ljets channels

16th January 2025

Scalar or Pseudoscalar ?

•

٠

Quantifying η_t

- "Cross section" = difference between the data and the pQCD predictions:
 - $\sigma(\eta_t) = 7.1 \pm 0.8 \text{ pb}$
- comparing to NRQCD prediction:
 - $\sigma(\eta_t)^{\text{pred}} = 6.43 \text{ pb} (\text{PRD 104} (2021) 034023)$
- interpret with caution: missing uncertainties on model, kinematic effects on efficiencies, soft gluon radiation, . . .
- number should be considered as an experimental input for further theory building

good agreement with available predictions

Quantifying η_t

impact on BSM limits, e.g. A

uncertainties dominated by background modeling

Consistency with Other Results: Invariant Masses

• tension in m_{tt} between data and pQCD at the threshold region in multiple measurements

Consistency with Other Results: Spin Correlation

- tension in m_{tt} between data and pQCD at the threshold region in multiple measurements
- recent entanglement measurements at threshold point to stronger slopes D
 - \rightarrow pseudoscalar contributions

Consistency with Other Results: Spin Correlation

- CMS
- tension in m_{tt} between data and pQCD at the threshold region in multiple measurements
- recent entanglement measurements at threshold point to stronger slopes D
 - \rightarrow pseudoscalar contributions

Consistency with Other Results: ATLAS A/H Search

- II, 2b, ≥4 jets category for both ATLAS and CMS
 - compare pre-fit distributions
 - e.g. at high $|\cos\theta^*|$: similar excess in data at low $m_{t\bar{t}}$

Consistency with Other Results: ATLAS A/H Search

CMS

- II, 2b, ≥4 jets category for both ATLAS and CMS
 - compare pre-fit distributions
 - e.g. at high $|\cos\theta^*|$: similar excess in data at low $m_{t\bar{t}}$
- for dilepton difficult to compare
 - no reconstruction of top quarks/spin in the ATLAS result
 - different variables: m_{IIbb} vs. $\Delta \phi_{II}$

dedicated spin observables robust against systematics – key difference?

Closing Remarks

CMS-PAS-HIG-22-013

- search for new spin-0 (pseudo)scalars in tt final states with full Run 2 dataset
 - dilepton and lepton+jets channels, using m_{tt}, angular and spin observables
- observed excess in data at low m_{tt} consistent with pseudoscalar
 - interpretations in terms of a simplified model of a $t\bar{t}$ bound state η_t or a generic pseudoscalar A and scalar H
 - extracted cross section for a specific η_t (toy) model (PRD 104 (2021) 034023)
 - stringent limits on A/H with η_t included in the background
- for the future:
 - a complete non-relativistic QCD calculation of tt bound state effects is crucial!
 - theory input needed

Whatever the excess is – It is exciting !

BACK-UP

16th January 2025

• first A/H search at CMS based on data recorded in 2016 (JHEP 04 (2020) 171)

Limits without Toponium

16th January 2025

Limits with Toponium

16th January 2025

Systemtic Correlations

The Problem of delta phi and the Strength of D

- convolution of boost and spin
- large NNLO correction in extrapolation to full phase space

Spin correlation coefficient/asymmetry

C_{ii} = 0, 1

0.5

0.5

-0.5

Systematics Details

Experimental

- Jet energy corrections split into 11 subsources
- Jet energy resolution
- Unclustered p^T_{miss} (uncorrelated between years)
- Luminosity correlated and decorrelated parts between years
- Pileup
- Trigger efficiencies (separate for ll / lj)
- Electron efficiencies (reco. & ID)
- Muon efficiencies split into syst. and stat.
- B tagging and mistagging efficiencies
- B tagging split into subsources
- L1 ECAL prefiring (where applicable)
- Data-driven EW+QCD BG (l+jets) : shape & rate (50%) uncorrelated between channels
- Data-driven Z+jets normalization (ll)

Theory

- Factorization & renormalization scales:
 - $t\bar{t}$, tW, tq, Z+jets; η_t (BG or signal), A/H signal
 - Uncorrelated between processes
- tt
 including cross section variation
- Same for initial & final state radiation PS scales
- MC top mass: ±1GeV (interpolated from ±3GeV)
 - Also including cross section variations
- ME-PS matching (h_{damp})
- Underlying event tune
- Color reconnection: 3 different samples
- PDF: PCA performed on final templates from 100 replicas → only leading component considered
 PDF α_s
- Electroweak corrections:
- SM Higgs-Top Yukawa coupling (1 +0.11 -0.12)
- EW correction scheme (additive v. multiplicative)
- Minor BG cross sections: 15% for tW and tq; 30% for Diboson and tt+X

Systematics Details

Uncertainty (# of parameters)	Туре	Process	Channel
Jet $p_{\rm T}$ scale (17)	shape	all	all
Jet $p_{\rm T}$ resolution (4)	shape	all	all
Unclustered $p_{\rm T}^{\rm miss}$ (4)	shape	all	all
b tagging heavy-flavor jets (20)	shape	all	all
b tagging light-flavor jets (5)	shape	all	all
Single-electron trigger	shape	all	ej
Single-muon trigger (5)	shape	all	μj
Dilepton triggers (12)	shape	all	ee, eµ, µµ
Electron identification (2)	shape	all	ej, ee, eµ
Muon identification (10)	shape	all	<i>µ</i> ј, еµ, µµ
ECAL L1 trigger inefficiency (3)	shape	all	all
Pileup	shape	all	all
Integrated luminosity (7)	norm.	all	all
Top quark Yukawa coupling	shape	SM tī	all
EW correction scheme	shape	SM tī	all
m _t	shape	SM $t\bar{t}$, Φ , η_t	all
ME $\mu_{\rm R}$ (5)	shape	SM t \bar{t} , Φ , single top, Z/γ^*	all
ME $\mu_{\rm F}$ (6)	shape	SM tt, Φ , η_t , single top, Z/ γ^*	all
PS ISR (6)	shape	SM tt, Φ , η_t , single top, Z/ γ^*	all
PS FSR (6)	shape	SM tt, Φ , η_t , single top, Z/γ^*	all
Color reconnection (2)	shape	SM tī	all
hdamp	shape	SM tī	all
PDF (2)	shape	SM tt	all
Single top quark normalization	norm.	Single top	all
EW+QCD normalization	norm.	Data-driven EW+QCD	lj
EW+QCD shape (20)	shape	Data-driven EW+QCD	lj
ttV normalization	norm.	tĪV	eĒ
Z/γ^* normalization	norm.	Z/γ^*	$\ell \overline{\ell}$
Diboson normalization	norm.	Diboson	$\ell \overline{\ell}$
MC statistical (3920)	shape	all	all

16th January 2025

EW Corrections

- Our EW correction (Hathor) is NLO in EW but LO in QCD
- Ambiguity on how to apply EW corrections to (N)NLO simulation
- Nominal choice: multiplicative

$$\sigma^{\text{rew.}} = \sigma^{\text{LO EW}}_{\text{NLO QCD}} \times \frac{\sigma^{\text{NLO EW}}_{\text{LO QCD}}}{\sigma^{\text{LO EW}}_{\text{LO QCD}}}$$
Alternate choice: additive MadGraph

$$\sigma^{\rm rew.} = \sigma^{\rm LO~EW}_{\rm NLO~QCD} + \sigma^{\rm NLO~EW}_{\rm LO~QCD} - \sigma^{\rm LO~EW}_{\rm LO~QCD}$$

Hathor

Difference treated as systematic uncertainty