Looking for neutrino suppression in power spectrum with DESI DR1 data

Nicola Deiosso - PhD Student at CIEMAT

BCN-MAD Meeting @ CIEMAT, Madrid

27/01/2025

Ciemat

Cosmology with massive neutrinos

- Existence of massive neutrinos implied by neutrino oscillations
- Massive neutrinos affects both background expansion and on growth of fluctuations
- Neutrinos contribute both as radiation and as non-relativistic matter respectively in early universe and recent epochs
- High-velocity dispersion implies the suppression of matter power spectrum below the free streaming length

Cosmology with massive neutrinos

 At low z, neutrinos are non-relativistic, contributing to the non-relativistic matter density

$$\omega_M = \omega_b + \omega_{CDM} + \omega_v$$
 with $\omega_v = \sum m_v / (93.14 eV h^2)$

- Massive neutrinos affect background evolution, in particular the redshift of matter-Λ equality
- Normal Ordering (NO): the two smallest mass neutrino eigenstates have the smallest mass splitting $(\sum m_{\nu} \ge 0.059 \ eV)$
- Inverted Ordering (IO): the two smallest mass neutrino eigenstates have the biggest mass splitting $(\sum m_{\nu} \ge 0.10 \ eV)$

Neutrino mass effects on matter power spectrum

Effects of neutrino masses on P(k)

- Suppression in *P*(*k*) on small scales (large *k*)
- Two main effects:
 - Neutrinos do not cluster below their free-streaming scale
 - CDM and baryon perturbations grow slower in the presence of massive neutrinos

Growth of matter perturbations:

- Above the neutrino free-streaming scale: $\delta_m \varpropto a$ (purely matter dominated).
- Below the free-streaming scale: $\delta_m \propto a^{1-3 f_{\mathcal{V}}/5}$
- ${}^{\bullet}\,f_{\nu}=\Omega_{\nu}/\Omega_{m}$

Neutrino mass effects on matter power spectrum

Suppression of $\Delta P(k)/P(k)$:

• $\approx -8f_{\nu}$ for linear matter perturbations • $\approx -10f_{\nu}$ including non-linear effects

Step-like suppression:

 Since neutrinos with different masses become non-relativistic at different times, it is expected that the suppression of matter power spectrum happens in three steps, according to the freestreaming scale of each neutrino mass eigenstate

- Current cosmological data is sensitive only to the total neutrino mass Σm_{ν}

Dataset: Full-shape DR1

- Galaxy power spectrum analyzed for each z bin
- No scale-cuts ($k_{min} = 0, k_{max} = 0.522, dk = 0.001$)
- Covariances calculated with **thecov** module

Tracer	redshift range	N_{tracer}	$z_{ m eff}$	$P_0 \ [(h^{-1}{ m Mpc})^3]$	$V_{\rm eff} \ [{ m Gpc}^3]$
BGS	0.1 - 0.4	300,017	0.295	$\sim 9.2 \times 10^3$	1.7
LRG1	0.4 - 0.6	506,905	0.510	$\sim 8.9 \times 10^3$	2.6
LRG2	0.6 - 0.8	771,875	0.706	$\sim 8.9 \times 10^3$	4.0
LRG3	0.8 - 1.1	859,824	0.930	$\sim 8.4 \times 10^3$	5.0
ELG2	1.1 - 1.6	1,415,687	1.317	$\sim 2.9 \times 10^3$	2.7
QSO	0.8 - 2.1	856,652	1.491	$\sim 5.0 \times 10^3$	1.5

BCN-MAD Meeting @ CIEMAT, Madrid, 27/01/2025

Theoretical Power Spectra

- Theoretical power spectra calculated with CAMB code
- Planck cosmology assumed as fiducial
- A three degenerate neutrino mass eigenstates model is adopted
- m_{ν} set to **0** eV (reference), **0.06** eV, **0.1** eV, **0.25** eV and **0.4** eV
- For the ratio, a theoretical PS was calculated for each bin of redshift considered
- Calculated for the same k range and dk

Approximation and simplifications

As this work is still in an embryonic state, until now some simplifications and approximations have been considered

- Effects of non-linearities at large scales not considered
- Effects of different cosmologies not considered and only tests on ΛCDM
- Biases used for scaling the PS, especially for QSO, under discussion
- Still no study on scale cuts or different binning options

 $\Delta P(k)/P(k)$ calculated between data PS and synthetic PS with $m_{\nu} = 0$

Bias considered for different tracers:

- 2 for LRG
- 1.5 for BGS
- 1.2 for ELG
- 2.1 for QSO
- 1.6 for combined tracer

Growth factor is considered

Almost all tracers show the step!

- Σm_ν information obtained fitting the fractional difference via f_ν using curve_fit function in python
- Very simple model added to the various approximations and simplifications: handle with care!
- Fit done in full k range, including large scales (with non-linearities)
- Not so focused on the number, but it seems already not so unreasonable

Most anomalous case: QSO. All positive values (maybe due to bias value?)

- We tried to compare PS from data with different synthetic ones considering models with different neutrino masses
- Suppression entity seems to change varying neutrino masses as expected
- Small effect given by the different ∑m_ν considered in the model

Comparison with theory

- Pretty noisy signal, given also by the small dk choice
- Comparison with theoretical expectations underline the presence of the signature
- Even considering all the approximations, signature seems to rule out Σm_ν < 0 and Σm_ν > 0.4 eV (but not excluded within the error)

Comparison with theory

BCN-MAD Meeting @ CIEMAT, Madrid, 27/01/2025

Conclusions and outlook

Neutrino suppression signature in full-shape power spectrum could be a powerful instrument that could help on constrain $\sum m_{\nu}$ and excluding scenarios independently from combinations with external datasets

This work is still in an embryonic state, but we want to improve it:

- Better understanding of the non-linear part
- Better implementation of the bias
- Improving fitting model and considering use of scale-cuts
- Exploration of different binning and fiducial cosmologies
- Better understanding in other potential effects

These preliminary results are obtained using just DR1 Full-shape data: even better perspectives for Y3 data release and future ones!