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The Lyman-a forest tells us about early-universe dark
matter structure and gas physics
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* Flux decrements probe low-to-intermediate
densities (saturating at 6~10)
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At scales larger than ~1 Mpc, gas traces the dark 20 25 30 35 40
mattel’ (pressure Support at Sma”er ScaleS) BAO results paper, DESI Collaboration 2024

Key goal: robust
measurement of matter
power spectrum amplitude
and slope — constrain dark
matter models, neutrino
mass, QM
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One-dimensional power spectrum (P, )

Currently two approaches:

e FFT estimator

o Masked pixels impact the power spectrum, effects are incompletely
modeled

o Much faster

e Optimal quadratic estimator
o Masked pixels are fully accounted for
o Pixels also inverse-variance-weighted
o Much slower




Incorporating 3D information: P,

Same two approaches possible (FFT
& quadratic)

Scales with N> — quadratic estimator
may be prohibitively slow

Different quasar redshifts add
complication
Current FFT approach
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Cutting large fraction of data
Modeling of mask is incomplete
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Mask Modeling: Motivation 110- I e e
e Many reasons to mask pixels: 3

o Damped line absorbers (DLAS) :

o  Missing / corrupted data ' Ca H (3967.3, 3971.0)

o Emission/absorption lines from the atmosphere and 0.90

galaxy s Ca K (3933.0, 3935.8)
e In practice, masking = setting pixel to 0 3750 4000 4250 4500 4750 5000 5250 5500 5750
e P1D or Pxvia FFT estimator — FFT sees this ATA]
as true signal variation — biases the signal Spectrum including a sky line and Galactic

e Current approach calculates scale-dependent Calcium lines (Ramirez-Perez 2023)

multiplicative correction from mocks

e Challenges with this approach:
o Difficult to perfectly mimic the masking used in data
o Some features in the data will not be in the mocks;
these can be impacted (e.g. smoothed) by the mask



Incorporating masking into mock spectra from MP-Gadget sims*

Random masking Double-line masking

DLA-like masking Single-line masking
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Incorporating masking into mock spectra from MP-Gadget sims*

DLA-like masking
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Skyline-like masking

Random masking of 1-5 pixels in each skewer
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Effects on P1D

Keeping total number of masked
pixels equal — similar low-k deficit

Different scale-dependent behavior

P1p [Mpc]
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Modeling the mask effects — Methods

Continuous case:
As done in other fields (e.g. CMB), predict the masked signal by convolving

Fourier-transformed weights with the theory P1D:

(1nl") = | g Calhn — D) P

True P1D

We|ghts/mask* in
Fourier space Resolution *Masking is a sub-case of weighting:
In masking, weight =1 or 0

Can optimize the FFT estimators by

noise-weighting pixels, and use this
approach to model the impact

In practice, on the hydro boxes:

weight/mask FFT for many
different spectra (index q)

Average over the <ém> = Wm—n
/(W3 4 > -

Calculate the for the masked P1D by
convolving W with the theory for true P1D



Modeling the masks — Results (double-line case)
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Modeling the masks — Results (all)
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Zero-padding spectra

e Makes spectra periodic at the boundaries
(zeros on either side) — better for FFT

e Preserves more of the data

e \We can model the padding exactly, as it
acts just like a mask

Add long list of
consecutive zeros
to spectra ends
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Conclusions and Future Work

Modeling the exact mask impacts through convolution
removes the mask bias

Modeling can also be used for non-binary weights, allows
for optimization of FFT estimators

Same formalism works for PX and would allow us to use
all the data, overcoming past limitations

Next steps:
e incorporate into DESI inference pipelines for P, and P :
— convolve the theory predictions with exact data mask, before comparing with data

e work on modeling of metal contaminants and other systematics




Extra slides



P1D from optimal estimator
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Optimal quadratic estimator for Px (proof-of-concept)

Narrow bin in rperp
tiny fraction of box
Bottleneck is speed
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