

____QSO's Lyα emission

Cosmology with the Lyman- α forest in the nonlinear regime

Lya Forest BCN-MAD meeting 27/01/25 ©Ellison 2020 ichaves@ifae.es Jonás Chaves-Montero

Cosmology with the Lyman- α forest

On large scales, constraints on the expansion history via BAO measurements

On small scales, constraints on the amplitude and slope of the power spectrum:

- Growth history
- Sum of neutrino masses
- Nature of dark matter

Chabanier+19

Statistics

Correlation of absorptions:

- Different lines of sight (P3D)
- Same line of sight (P1D)

©Bruno Villasenor

P1D modeling

Hydrodynamical simulations:

- Nonlinear growth of structure
- Nonlinear peculiar velocities
- IGM ionization state
- Thermal broadening
- Gas pressure

Probes low-density regions of the universe so subgrid physics plays a minor role (Quick-Lya approx)

Ravoux+23 (DESI EDR)

P1D emulator

In principle, cosmological inference would require running a simulation for each point of MCMC chains

Emulators: surrogate models that "interpolate" between simulations

Training set:

- Gadget: 30 fix-and-paired simulations of 67.5 Mpc on a side
- Nyx: 16 simulations of 120 Mpc on a side (IGM rescalings)

Cabayol-García, **Chaves-Montero**+23

P1D emulator: design

Parametrize P_{1D} as a function of:

- Cosmology: amplitude and slope of power spectrum at k_p=0.7/Mpc (Δ²_p, n_p)
- Astrophysics: ionisation and thermal state of IGM (<F>, στ, γ, k_F)

Multiple strategies to mitigate cosmic variance

Mixture Density Model to predict P_{1D} and uncertainty

Hidden layers hi

Cabayol-García, Chaves-Montero+23

P1D emulator: cosmology compression (Δ^2_p , n_p , z)

Universe almost EdS for Lyman- α forest redshifts, $\Box_M(z>2)>0.9$: similar expansion history, growth rate, and peculiar velocities

P1D emulator: accuracy

Simulations not in the training set:

1e4

1.8

1.6

1.4

0.8

0.6

2.0

2.5

3.0

Ζ

∑ 1.2 ⊢° 1.0

- Cosmology: growth history, massive neutrinos, running, curvature
- Astrophysics: reionization history

P1D inference with DESI-DR1

Joint fit of P_{1D} measurements from multiple redshift bins

Parametrized redshift evolution of IGM parameters

Astrophysical contaminants (metals, DLAs, AGN)

Mock challenge to validate the pipeline (cup1d)

Chaves-Montero in prep.

P1D inference with DESI-DR1

 $\chi^2 = 45.991888$ (ndeg=696, prob=100.0%)

5 -	$\chi^2 = 0.24 \text{ (ndeg=59, prob=100.0%)}$		<u></u>
	$\chi^2 = 1.02$ (ndeg=56, prob=100.0%)		
4 -	$\chi^2 = 1.43$ (ndeg=53, prob=100.0%)	rtt .	
	$\chi^2 = 2.27$ (ndeg=50, prob=100.0%)		
PID	χ ² = 5.07 (ndeg=46, prob=100.0%)		ri+
Pdata/ ID w	χ² = 6.56 (ndeg=43, prob=100.0%)	•	rt z=2.2
	χ ² = 9.85 (ndeg=40, prob=100.0%)	ł	z=2.4 z=2.6
2 -	χ^2 = 7.03 (ndeg=37, prob=100.0%)		z=2.8 z=3.0
	$\chi^2 = 3.26$ (ndeg=34, prob=100.0%)		z=3.2 z=3.4
1-	$\chi^2 = 6.75 \text{ (ndeg=31, prob=100.0%)}$	÷	z=3.6 z=3.8
	$\chi^2 = 2.52 \text{ (ndeg=27, prob=100.0%)}$	÷	z=4.0 z=4.2
0	.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 <i>k</i> _{ll} [s/km]	0	.040

Chaves-Montero in prep.